

NetWeave

Programmer’s Guide

User’s Guide for Version 2.0 January 2008

www.netweave.com

Copyright © 2002-2008 NetWeave Integrated Solutions, Inc.. All rights reserved.

Netweave is a registered trademark of Netweave Integrated Solutions, Inc.

Windows is a registered trademark of Microsoft Corporation.

CICS, MVS, and MQSeries are registered trademarks of the IBM Corporation.

UNIX is a registered trademark of The Open Group.

Tandem, Guardian, VMS, and OpenVMS are registered trademarks of Hewlett-Packard.

All other trademarks are noted in the text and are the property of their respective owners

Table of Contents

INTRODUCTION TO PROGRAMMING NETWEAVE.. 1

What is NetWeave?..1

The NetWeave Documentation Suite...2

What’s In This Manual ..3

TOPICS FOR DESIGNERS ... 4

Choosing the Middleware That’s Right for You..4

The Messaging Services...4

Synchronous Messaging...4

Asynchronous (Queued) Messaging ..5

Broadcast Services ...6

Data Server...6

How Do You Decide? ..7

The NetWeave Agent...8

Multiplexing Connections On a Single Channel (Message Concentration)...9

Using the NetWeave Agent for Message Routing ...9

Protocol Conversion...10

System Security..10

Transaction Protection ...11

Using the Agent to Connect to Legacy Applications...12

IBM/CICS ..12

Providing Access to Pathway Serverclasses in a Tandem Environment..14

Tandem Pathsend Protocol...14

Synchronous (IPC) Messaging...15

Client-server...15

Peer-to-Peer Messaging ...16

Sleep: the Key to a Peer Process ..16

Exiting from Sleep Forever..18

Making Connections in Asynchronous Mode..19

Internal Queues for Asynchronous Messages ..20

Asynchronous (Queued) Message Services...21

How a Queue Works ..21

Queue Location..22

Queued Messaging Functions ..23

Designs with Multiple Queues...24

Sizing a Queue ...26

Expedited Messages...26

Broadcast Services ...27

Data Server Services ..30

Flat Files...30

Record-Oriented Files ..31

File Access Resources in the NetWeave Header File (netweave.h) ..31

Asynchronous Notification of File Changes ..32

Using NetWeave’s SQL Interface to Access Relational Databases...33

Tandem NonStop SQL...33

System Security ...35

Data Translation Services ..37

Defining Data to NetWeave...37

Message Translation ..38

Record Translation...38

Threaded Service ...39

TOPICS FOR PROGRAMMERS ... 41

The NetWeave Header File..41

Enumerations and Constants..42

Typedefs...43

Item Lists ...44

Programming Tips: Synchronous Calls ...47

Example #1: Synchronous Calls in a Client-Server Environment ..47

Example #2: Infrastructure..49

Example #3: A Simple Distributor for Queued Messages ..51

Programming Tips: Asynchronous Calls ...56

Context...56

Waiting for Events to Happen..57

Associating Events with Callbacks ..57

TANDEM ..58

UNIX..59

Digital Equipment Corp., VMS and OpenVMS ..59

Microsoft Windows NT, Windows Millennium ..59

Asynchronous Server: Case Study...60

Road Map for ASERVER..60

Prototyping with Synchronous Calls..70

Mixing Synchronous and Asynchronous Calls ..70

Calls with Timeouts ...70

Tips on Testing NetWeave Applications ...71

Threaded Dispatcher dp_pong: Case Study ...72

The Windows Versions of the NetWeave DLL ...76

W95..76

NT/2000 ...76

Contents of the NetWeave for Windows 95 and NT Releases ..76

SAMPLE NETWEAVE PROGRAMS ... 78

Accessing the NetWeave ftp Site...78

Code Samples...79

General Purpose Examples ..79

WinNT ...80

NTPongSamp.zip ...80

NTWindemo.zip...81

UNIX..82

Ibm_cics\cobol ...83

Win31...83

POWERBUILDER ..83

VisualBasic (vb30)...83

TANDEM ..84

TANDEM\cfile\T1.ZIP Data server...84

TANDEM\fifo\T2.ZIP Queued Mesages...85

TANDEM\ipc\T3.ZIP IPC Messaging...86

TANDEM\COBOL85\T4.ZIP Flat Files and Kernel Functions ..87

TANDEM\CRE\T9.ZIP ...88

TANDEM\CRE\T10.ZIP ...88

UNISYS ...88

GLOSSARY... 89

NetWeave Programmer’s Guide Version 2.0

January 2008 1

Introduction to Programming NetWeave

What is NetWeave?

NetWeave is a software-based middleware product that allows disparate computing systems to
interoperate. NetWeave supports a wide variety of computing platforms including those from IBM,
Compaq/Digital, Unisys, Compaq/Tandem, Stratus and large UNIX systems, as well as all PC, UNIX
and Macintosh workstations. To allow applications on these platforms to communicate with applications
on other platforms, NetWeave offers the following services:

• Messaging services (including transactional, queued, and broadcast styles)

• Remote data access and update

• File transfer capabilities

• Data conversion

• Transaction management

• Authentication, identification, and encryption services

The NetWeave Product Suite includes the following components:

Component Description

NetWeave Distributed Services
Product (NWDS)

The application library and a NetWeave Agent process that are
the heart of the NetWeave product.

The Reliable File Transfer Utility
Version 2

A utility for reliable, restartable transfer of binary and text files
between NWDS-supported hardware platforms. Available as
both an API and a command line program.

NetWeave Version 2 (NW2)
application (i.e., old NetWeave)

An older, non-wire-level compatible version of the NetWeave
product. Although NetWeave still supports existing installations
of NW2, all new implementations use NWDS.

Tandem Print Process A Despooler process that takes files spooled to the Tandem
Spooler and delivers them to other platforms as files.

NetWeave COM+ Interface
(for Windows 9x/NT/2000
platforms)

An interface used in integrated environments that want to
access the Microsoft COM environment.

NetWeave sample programs Sample code that demonstrates how to use the product in a
variety of supported environments. One of the sample
programs (PerfPong) measures performance on the network.

Interactive Test program (TST) A simple command line-driven program that lets you use the
NetWeave API interactively.

NetWeave Programmer’s Guide Version 2.0

January 2008 2

The NetWeave Documentation Suite

The table below lists the documentation for the NetWeave product. You can download these documents
from the NetWeave ftp site by connecting to ftp://www.netweave.com/middleware/doc/200/MSWord
(for Microsoft Word format) or ftp://www.netweave.com/middleware/doc/200/PDF (for PDF format).

Document Description Audience

Configuration
Guide

Explains how to install and configure a
NetWeave system for a customer's
particular environment.

Systems programmers who
maintain the communications layer
on which NetWeave rests.

Operations personnel who start and
shut down NetWeave processes in
a distributed environment.

Designers and managers who
configure the applications that use
NetWeave.

Programmer's
Guide
(this document)

Explains how to use NetWeave functions
to meet the requirements of distributed
systems.

Illustrates working sample programs.

Analysts who design and
programmers who build applications
in a distributed computing
environment.

Applications
Programming
Interface Guide

Explains how to use the NetWeave API
function calls for client-transaction
applications, messaging services, and
data server applications.

Programmers who create and
maintain NetWeave applications on
any system.

IBM/CICS
Configuration
Supplement

Explains and illustrates features of
NetWeave that are unique to the IBM
MVS/CICS environment.

System managers and analysts
who must install NetWeave in the
IBM MVS/CICS environment.

NetWeave Print
Process for
Tandem

Describes how to install and use this
printer driver to transfer spooled output
from a Tandem system to any computer
on which NetWeave is implemented.

Tandem system managers.

Enhancements Lists enhancements and significant bug
fixes by release version.

Project managers and programmers
who plan, build and maintain
NetWeave applications.

Performance
Tester

Explains how to use the Performance
Test program (distributed as a sample
program with NetWeave) to simulate and
measure various NetWeave application
configurations.

Project managers and programmers
who plan, build and maintain
NetWeave applications.

TST Guide Explains how to use the interactive
testing tool called TST.

Project Managers and novice
programmers.

NetWeave COM+
Interface
Document

Explains how to install and use the
NWCOM interface.

Microsoft Visual Basic and Visual
C++ Programmers.

NetWeave Programmer’s Guide Version 2.0

January 2008 3

What’s In This Manual

This manual consists of three main sections:

• Topics for Designers is a guide for analysts and designers who need to understand how to use
NetWeave to meet the requirements of their distributed systems.

• Topics for Programmers is a guide for programmers who must translate the design
requirements into working programs.

• Guide to Programs explains how to use the working sample programs on the NetWeave ftp
site. Both designers and programmers who want to build applications on distributed systems
need to study these programs and understand how they work.

NetWeave Programmer’s Guide Version 2.0

January 2008 4

Topics for Designers

This section discusses design considerations for building applications with the NetWeave API. It
assumes that you are familiar with middleware, have some experience with program design for a
distributed, heterogeneous environment, and understand how the tradeoffs inherent in the various
middleware tools can affect design decisions.

When designing a system, you must make the decisions about which tools to use and how best to use
them at several levels. At the highest level, you analyze the application problem to determine which
middleware services are the most appropriate. Your initial high-level choices then narrow the range of
choices available at the lower levels. Some common questions that need to be addressed early on in the
design process:

• Is this a messaging application or a database application?

• Will any existing applications be modified to use the NetWeave API?

• How much new development will there be? On which platforms?

• Is one type of NetWeave service enough, or will a combination serve you better?

The information in this section will help application designers and integrators make some of the early
high-level decisions required for a successful implementation.

Choosing the Middleware That’s Right for You

There are two types of middleware tools:

• Messaging services

• Data server services

The Messaging Services

Messaging middleware includes synchronous messaging (IPC messaging services such as client-server
and peer-to-peer), asynchronous (queued) messaging, and broadcast services.

With messaging middleware, the server application shields from client applications on other systems the
details of how a local system’s files and databases are organized and accessed. Therefore, the design
team has to define messages that contain the specific information that the message recipient needs to do
its job.

Synchronous Messaging

Synchronous messaging is used for applications where programs communicate and synchronize
operations by exchanging messages, such as on-line transaction processing or high speed, real-time
process control applications that have the following characteristics:

• Highly interactive

• “Know” their partner (are connection-oriented)

• Responsible for error control and recovery

NetWeave Programmer’s Guide Version 2.0

January 2008 5

In synchronous messaging, the client blocks until it gets a response from the server that a message has
been successfully received. Therefore, application designers must define contingencies for problems
either on the network or on the remote (partner) computer. In the real world, there is very little
difference between a network problem and a problem with a remote process, and both can usually be
treated the same way by both client and server applications.

NetWeave uses the term IPC messaging to refer to the general exchange of messages between peer
processes. The two models of interprocess communication are client-server and peer-to-peer.

The client-server model is the most common form of IPC messaging. The client application sends a
request message to the server program, which retrieves information or updates a local database on
behalf of the (remote) client application. Client-server designs are commonly associated with on-line
transaction processing (OLTP) where there is substantial interaction among processes and where high
throughput is essential.

For many businesses, NetWeave offers an extremely effective means to preserve the substantial
investment in existing legacy business and commercial applications. These legacy applications can be
enhanced to perform as NetWeave application servers, often with few (if any) changes to the existing
code.

Client-server designs must address the following concerns:

• How will system security be compromised by the addition of remote clients?

• How do we make multiple, coordinated changes to applications on the server machine?

• How do legacy applications communicate with the new client applications?

• How should error checking change to reflect the fact that a considerable amount of user input
validation now occurs on the workstation machine?

For more information about IPC messaging, see page 15.

Asynchronous (Queued) Messaging

Queued message services, which are always asynchronous, are used to connect autonomous
applications. Because queued messaging is connectionless, the interaction between applications consists
of a very simple unidirectional flow of information that does not require acknowledgment. The
middleware assures reliable message delivery and error recovery.

Queued message services have much lower throughput statistics than do client-transaction services.
Because of the slower throughput, most queued messaging services have a scheme for prioritizing
messages: high priority messages have their own queue, and the message delivery software gives
preference to this queue.

Design issues for asynchronous messaging:

• Where should the queue be located, and how large should it be?

• Should there be only one consumer per queue?

• What kind of performance can be expected?

• How can a particular message be expedited?

For more information about queued messaging, see page 21.

NetWeave Programmer’s Guide Version 2.0

January 2008 6

Broadcast Services

Broadcast services are very effective in a distributed environment where you don’t know or care how
many entities will be receiving the information. Just as a TV network broadcasts the news without
worrying about which TV set actually receives the signal, an application that generates a message
(sender) does not need to know anything about a particular application that receives the information
(receiver). A sender may continue to generate broadcasts even in the absence of receivers.

To use NetWeave’s broadcast services, senders and receivers must be connected via an IP backbone.
Broadcast services are implemented on top of UDP datagram services. Like TCP/IP, UDP belongs to
the IP family of protocols. Datagrams are ideal for broadcasts because they are delivered to the IP
network layer without regard to how many nodes in the network may consume the information: one
sender, potentially limitless readers. This is why broadcast services scale far better than any other form
of middleware. Where the broadcast audience is PCs and workstations (variable numbers in service at
any one time and/or over time), the scaling of message delivery is often the hardest requirement to
satisfy for a distributed application.

By design, UDP datagram services are connectionless. They are also “unreliable,” in the sense that there
is no guarantee that any given datagram will be delivered to a particular node in the IP network. To
address this, the NetWeave broadcast API provides a reliable, scalable, high-speed message delivery
mechanism to offset the inherent unreliability of the datagram service.

For more information about broadcast services, see page 27.

Data Server

Data server services allow all computers in the network to access a particular computer platform’s file
system. Typically, an application on one computer reads and updates the files and records in another
computer’s file system to provide a single, standardized repository of corporate data.

Data server services are very similar to the familiar functions that perform disk I/O. These services
make I/O on a remote system as easy and intuitive for the programmer as file I/O is on the local system.
Whether the target is a record structure in a file system or a row in a table of a relational database, the
remote application performs I/O operations without regard to the location of the file.

NetWeave’s client-data base API supports access to SQL databases and record-oriented file systems on
host computers. These functions may be integrated with NetWeave’s authentication functions to control
access to datasets and records in files. For more information about data server services, see page 30.

NetWeave Programmer’s Guide Version 2.0

January 2008 7

How Do You Decide?

How do you decide which service to use to interconnect and coordinate applications in a distributed
computing environment? Some rules of thumb for middleware services:

Service Description

Synchronous
messaging

Services that use synchronous messaging are tailored for OLTP, and have
better throughput than queued (asynchronous) messaging. However, with
synchronous messaging, the application must assume responsibility for
error detection and recovery. Synchronous messaging is a good choice if
applications on the host platform contain complicated business logic
and/or maintain the relational integrity of the corporate database.

Asynchronous
messaging

Queued (asynchronous) messages are best for workflow among
autonomous applications. Use asynchronous messaging services for
expedited messages and set up a queue per consumer to simplify
recovery. This service is a good choice if applications on the host platform
contain complicated business logic and/or maintain the relational integrity
of the corporate database.

Broadcast Broadcast is an ideal mechanism when you need to distribute information
to a large number of users, the number of recipients is unknown, and
acknowledgment is irrelevant. Broadcast works well if message rates can
be kept relatively constant. If your application will have bursts of
messages, consider queuing them on the sender’s side and providing a
Distributor process that performs the actual broadcast.

Data server Data server services can always be implemented where the file and record
structures are known. If no development will be done on a particular
platform (the application is third-party, proprietary code that you can’t
access, or business decisions dictate that no more development be done
on a particular machine), data server is often your only choice.

NOTE: Because NetWeave’s services are not mutually exclusive, you should consider using
combinations of services to design your system. Also, depending on the platforms in your
network (but independent of whether you use messages or database services), you will need to
consider security and data translation needs.

NetWeave Programmer’s Guide Version 2.0

January 2008 8

The NetWeave Agent

NetWeave consists of a NetWeave Agent and a library that is linked with various applications. The
Agent is a special process that is installed on each platform where NetWeave services are required.
Typically the Agent is treated as an extension of the operating system, and is started as part of the boot
procedure. Sometimes, for performance reasons and/or to segregate applications, there may be more
than one NetWeave Agent operating on a given machine.

This section describes the role of the Agent in client-server designs for the following tasks:

• Message concentration

• Message routing

• Protocol conversion

• Security

• Transaction protection

• Connecting to legacy applications

Each NetWeave application is linked to the NetWeave library. This library, which conforms to the
standards of the hardware platform on which it resides, is the interface between the user’s application
and the foreign platform. For example, on a Tandem computer the library is statically linked with the
application, while on a PC the library is usually a dynamically linked library (DLL). In client-server
applications, the library performs all of the lower-level operations required to form connections, transfer
messages, and clean up disconnections.

To form a new connection, several layers within the NetWeave software must perform initialization
functions. When a client application makes a TCP/IP connection with a server application, the
NetWeave library exchanges several messages with its partner on the server platform in a process called
negotiation. Because creating a connection requires several steps – each of which consumes system
resources – one objective of client-server application design is to minimize the number of times
connections are created and destroyed.

The NetWeave Agent mediates communication between a client application on one platform and a
server application on another in the following situations:

Situation Role of the Agent

Protocol translation When sender and receiver do not use the same network protocol, a
NetWeave Agent can perform the protocol switch.

Link consolidation If many client applications want to establish messaging sessions with
one or more applications on a remote machine, using a NetWeave
Agent on one or both platforms reduces the effective number of
network channels between the platforms.

Routing isolation If they communicate through a NetWeave Agent, client applications
and their configuration (INI) files do not need to know the details of a
server’s actual location and connection requirements. They simply
have to know how to talk to the Agent, and they must have a name
that they can use to refer to the destination application. The
NetWeave Agent takes care of the details of how to connect to the
application server.

NetWeave Programmer’s Guide Version 2.0

January 2008 9

Figure 1 illustrates two client-server models, one that uses an Agent, and one that doesn’t:

Client Server

NW NW

NW

Server

NW

Client

Agent

Figure 1. IPC messaging with and without a NetWeave Agent

NOTE: Although the Agent software is optimized for throughput, a design that does not use the
Agent at all will give you better performance, simply because eliminating a process hop and a
context switch often speeds things up. However, because link consolidation (described on the
previous page) allows you to bunch traffic from different sessions into a single network transfer,
this consolidation often yields better performance.

Multiplexing Connections On a Single Channel (Message Concentration)

Some transport media (TCP/IP, SPX/IPX, and LAN protocols such as Netbios) allow unlimited
connections, while others (APPC and packet switched networks) do not. Where the underlying transport
media limit the number of connections, you can install an Agent on each platform, and all connections
with the remote platform are then placed through the local Agent. The Agents on the two platforms can
multiplex many connections and conversations between clients and servers through a single transport
channel.

Using the NetWeave Agent for Message Routing

NetWeave message routing is analogous to a hardware router in the physical network. A hardware
router moves packets through the network, deciding which path a packet should take when several
routes are available. The nodes at the end points (the sender and receiver of the message) don’t know or
care which path a given packet travels.

To increase service reliability and redundancy while minimizing NetWeave INI file maintenance, you
can use the NetWeave Agent to perform routing functions at the application level. In Figure 2, a client
application connects to a server via an Agent. Sometimes the server runs on platform A; other times it
runs on B. To use Agent routing, you don’t have to change the client or its INI file: just change the

NetWeave Programmer’s Guide Version 2.0

January 2008 10

Agent’s INI file to point to the active server. The Agent may run on any of the three platforms, or even a
fourth!

NW

Server

NW

Client

Agent

Server

NW
Platform A

Platform B

Figure 2. NetWeave Agent routing capabilities

Protocol Conversion

For the NetWeave Agent, protocol conversion means receiving a message from a client via one
communications protocol and relaying it to the server via a different one. Protocol conversion is often
used when the server is a legacy application. The two most common uses of protocol conversion
(connecting to IBM/CICS transactions, and connecting to Tandem Pathway serverclasses) are described
in “Using the Agent to Connect to Legacy Applications” on page 12.

System Security

A designer is responsible for the following aspects of secure communications:

• Authentication: is the client who she/he claims to be? Has the data been altered en route from
the client?

• Encryption: is the data safe from prying eyes?

NetWeave provides a flexible, powerful interface for user authentication. The security functions are
controlled by the Agent and are optional, in that you can choose whether to use NetWeave’s security
capabilities or not. For example, if your system/network exists in a closed, captive environment, you
may not need any security at all.

For more information about system security, see page 35.

NetWeave Programmer’s Guide Version 2.0

January 2008 11

Transaction Protection

A transaction protection monitor (TP) is software on a host computer that coordinates updates to the file
system and databases. You can tell a TP that either all changes in a series must be executed successfully,
or the program should back out to the original state that was in effect when the transaction began.

Another design objective when implementing OLTP is to construct messages that allow the server to
control the transaction. All the information to be updated together is sent as a single request message.
The server starts the transaction, applies the updates, instructs the TP to commit (i.e. apply the work
done), and finally replies to the client

If the client, as keeper of context, must use more than one request message – either to the same or to a
different, context-free server – to make coordinated updates, the client must initiate the transaction with
the TP. The client must also tell the TP to either commit or roll back (abort) the transaction at the end.
In addition, the NetWeave Agent on the host platform provides the interface between the client and the
host’s TP monitor, and the Agent (on the host) holds the transaction context on behalf of the remote

client. To manage transactions, clients use the NetWeave functions that begin with nwds_tp_:

Function Description

nwds_tp_start Issued by the client to begin a transaction on the host (server’s)
computer.

nwds_tp_commit Issued by the client to signal the TP to commit (apply) the work.

nwds_tp_abort Issued by the client to signal the TP to abort (roll back) the work.

In Figure 3, the client’s logical transaction spans more than one service request at the Agent’s platform.
The Agent, TP, and servers are assumed to be on a common platform. It doesn’t matter whether the
requests go to the same server or two different ones: for purposes of TP control, if the servers are
“context free,” two requests to the same server are logically indistinguishable from two requests to two
different servers.

NetWeave Programmer’s Guide Version 2.0

January 2008 12

NW

Server

NW

Client

Agent

NW

1st request

2nd request

tp_start()

Server
#1

#2

TP

Monitor

TP commandsipc_write(#1)
ipc_write(#2)
tp_commit()

Figure 3. NetWeave transaction protection architecture

Using the Agent to Connect to Legacy Applications

The NetWeave Agent is often used to provide connectivity to legacy applications, such as those on the
IBM/CICS and Tandem Pathway platforms. Both cases represent substantial investments in installed
software, and provide a natural ─ though proprietary ─ message-oriented interface to servers (called
“transactions” in CICS and “serverclasses” in Pathway). The Agent converts the network protocol used
by the client application on the remote platform to the proprietary interface of the host transaction
monitor.

IBM/CICS

CICS has two mechanisms for communicating with transactions (servers):

• Write a request to a transient data queue (TDQ) with an associated trigger level. A TDQ is an
input queue for the transaction that buffers requests. It is not a two-way transmission
mechanism for returning a reply.

• Call the CICS "execute" function for a specified transaction and pass the request message as a
parameter.

NetWeave Programmer’s Guide Version 2.0

January 2008 13

The NetWeave Agent supports both mechanisms. To indicate which one to use, the application uses the

item list parameter NWDS_CICS_IMAGE_FLAG, which can take one of two values:

Value Description

NWDS_CICS_IMAGE_TDQ_NAME Passes a message to a long-running transaction via its
TDQ. Because a long-running transaction avoids the
penalties associated with transaction startup (loading the
image, opening files, etc.), you should use this method to
support client-server applications for OLTP.

NWDS_CICS_IMAGE_TRANS_ID Executes a specified transaction (once).

In Figure 4, a remote client sends a request message to the NetWeave Agent in the CICS region. The
Agent writes the request to the transient data queue, and CICS signals the transaction (server) to read its
message and process it.

NOTE: Because a TDQ buffer inputs requests, you can’t return a reply from the server to the
Agent via the TDQ (and hence back to the client). This is an important difference from the
standard model of client-server where the server replies to the client when its work is completed.

NW
Server

Client

Agent
TDQ

Figure 4. IBM MVS/CICS messaging environment

NetWeave Programmer’s Guide Version 2.0

January 2008 14

Providing Access to Pathway Serverclasses in a Tandem Environment

NetWeave is installed in many situations where the client application replaces traditional Tandem
requesters on PCs and workstations. The NetWeave Agent on Tandem provides access from client
applications on external, remote platforms to Pathway serverclasses (servers). To form these
connections to the serverclasses, NetWeave uses Tandem’s Pathsend mechanism. You don’t have to
change or reconfigure anything in the Pathway environment to permit access by NetWeave clients.

NW

Client

Agent
Pathway

Serverclass

pathsend

Figure 5. Tandem Pathway messaging environment

Tandem Pathsend Protocol

A remote application may use the nwds_ipc API functions to talk to a Pathway serverclass. In most

cases, the serverclass does not need to be NetWeave-enabled (no coding changes are required in the
serverclass) to handle calls to NetWeave.

In releases before 1.05.05, NetWeave implemented its interface to Pathway serverclasses with the same

syntax used by all other forms interprocess communication; that is, the nwds_ipc API worked the
same way regardless of the underlying transport mechanism. In subsequent versions, the Pathsend
changed because Tandem requires that a single-threaded serverclass be shielded from opens and closes
of different linkmon processes. Because of these changes, Pathsend performance in version 2.0 is
substantially better, and you can expect message rates to nearly double.

NOTE: If a COBOL serverclass is NetWeave-enabled, it should use the NetWeave API for IPC
messaging, even if all messages will be delivered via Tandem’s proprietary $receive mechanism.

NetWeave Programmer’s Guide Version 2.0

January 2008 15

Synchronous (IPC) Messaging

NetWeave uses the term IPC messaging to refer to the general exchange of messages between peer
processes. The two models of interprocess communication are client-server and peer-to-peer.

Client-server

The client-server model of messaging is the simplest and most common. In this model, the client
application acts as the interface between the human user and the computer to receive inputs, edit them,
and prompt the user where appropriate. The application uses the user’s inputs to construct a message
that it sends to the server program. The server program retrieves information or updates a local database
on behalf of the (remote) client application. When the server’s work is done, it replies to the client by
sending either the requested information or a message about the status of the operations performed for
the client.

Request

Reply

Client Server

NOTE: In client-server designs, the client application is blocked (waiting) while the server is
doing its work. When you use the client-server model to implement OLTP, make the server as
efficient as possible to minimize how long the client application (and the impatient human) must
wait.

One way to increase server efficiency is to make the server application context-free by including in the
client’s request message all of the information that the server needs to perform its function (such as file
positioning information). To make the client the keeper of context, the server may need to include
context information in the reply. For more information about context, see page 56.

To build client-server applications, use the NetWeave functions that begin with nwds_ipc_. To create
connections between the client (the active partner) and the server (the passive partner), use the following
functions:

Function Description

nwds_ipc_publish Issued by the server to notify NetWeave that it is ready to receive
new connections.

nwds_ipc_connect Issued by the client to initiate the connection sequence.

nwds_ipc_accept Issued by the server in response to receipt of a new connection.

NetWeave Programmer’s Guide Version 2.0

January 2008 16

Both nwds_ipc_connect and nwds_ipc_accept return special tokens (called NetWeave
handles) to the client and server to represent the connection between them. Once a connection is
established, the client and server use the following functions to exchange messages:

Function Description

nwds_ipc_write Used by the client to send the request and used by the server to
send the reply.

nwds_ipc_read Used by either to read a message from the other.

NOTE: In the standard client-server model, the receiver must initiate nwds_ipc_read before

the nwds_ipc_write initiated by the sender can succeed.

To break an established connection, or to reject an attempted connection from an unauthorized user, use

nwds_ipc_shutdown.

Peer-to-Peer Messaging

Client-server technology, where an application client communicates with a single application, is one
instance of the more general peer-to-peer model of message delivery. In peer-to-peer messaging, any
application may send and receive messages from one or more other applications, and the “client” and
“server” designation may change on a message-by-message basis. The peer process accepts and
responds to any number of messages from any number of sources, either with or without
acknowledgment. NetWeave uses the same IPC services for both client-server models and peer-to-peer
models.

The peer-to-peer model is the most general form of IPC messaging, and has the following advantages
over client-server messaging:

• Better performance, because scarce communications resources are used more effectively.

• Better scaling than with client-server designs, because a peer process (one that can both
generate messages to other processes and receive [unsolicited] messages from other processes)
can manage several messages simultaneously.

Sleep: the Key to a Peer Process

Nothing is more important to a peer process than sleep, defined as the ability to wait for an event to
happen and to know what to do when it does. A typical external event would be the receipt of an
unsolicited message from a remote peer process.

A peer process usually defines the events it can handle and the possible responses to these events, and
then waits for things to happen. Although this sounds simple, because algorithms for an asynchronous
program are more complex than those for a synchronous program (such as a client or server
application), asynchronous programs may need more maintenance. To make it easier to create and

maintain successful asynchronous peer programs, the NetWeave API uses the nwds_sleep function.

NetWeave must control waiting in a program. Because many operations can occur within the NetWeave
library before the next message is returned to the application, these internal operations can occur

NetWeave Programmer’s Guide Version 2.0

January 2008 17

asynchronously only if NetWeave controls the waiting mechanism. You can also have a conflict if user
input (such as keyboard and mouse events) is processed synchronously, or if the application performs
lengthy synchronous operations that can interfere with NetWeave’s control of asynchronous events at
the application level. To prevent these types of conflicts, you may want to make an application that
interacts with a user synchronous, or use a multithreaded server that can handle several operations to be
processed concurrently.

There are four ways to use the nwds_sleep function, though not all of these modes can be used on

every platform:

• After all events are registered and set up, simply sleep forever, allowing callback functions to
handle all event processing.

• Same as above, but periodically wake from the sleep function to check for conditions such as
message timeouts or shutdown conditions.

• Awake from the sleep call whenever an external event occurs to check on some previously
defined and registered condition. Generally this is not a very good idea (and should not be
necessary), because you are creating two event wakeup conditions for every event.

• Implement nwds_sleep with no timeout, as you would for the UNIX poll() service. This
is useful if the caller simply wants to check for pending NetWeave events and then do some
other processing.

In most cases, nwds_sleep accepts an item list and a timeout value (in milliseconds). To specify

which mode of repose you want to use for your program, use the nwds_sleep item types

NWDS_KERNEL_ONCE and NWDS_KERNEL_SUSPEND. If a timeout value is negative, the application
will wait forever. When the item list is omitted (NULL), the default operations are:

• Sleep forever (if the timeout value is negative).

• Suspend the user’s application for the timeout number of milliseconds.

The table below lists the four nwds_sleep function modes. In this table, an event is defined as the
completion of an asynchronous operation that the user started, or that NetWeave started on the user’s
behalf. An event callback is what happens in response to a particular event. (Technically, it is a structure
that specifies which function to perform when the event occurs.)

The nwds_sleep function modes Description

SUSPEND ONCE, WAIT FOREVER If the timeout is negative and kernel_once is specified:

 1. Wait forever for the first event.

 2. Call the event callback.

SLEEP FOREVER If the timeout is negative but kernel_once is not
specified, keep calling the event callbacks forever.

SLEEP, WITH TIMEOUT If the timeout is positive and kernel_suspend is
specified, keep calling the event callbacks until the timer
expires.

NetWeave Programmer’s Guide Version 2.0

January 2008 18

The nwds_sleep function modes Description

SUSPEND ONCE, WITH TIMEOUT If the timeout is positive but kernel_suspend is not
specified:

 1. Wait for the first event, which may be the timeout.

 2. If it isn't the timeout, cancel the timeout.

 3. Call the event callback.

In NetWeave, to associate a callback function with an event, you normally use the callback structure
passed in the API. For example, the notification (second) callback provided in the call to

nwds_ipc_connect associates the receipt of an unsolicited message with the user's callback
function.

To allow the application the simplicity of a single wait point, NetWeave also provides a mechanism for

associating the nwds_sleep function with external, system-specific events. A programmer may want
to respond to events unknown to NetWeave, such as asynchronous inputs from a user’s mouse or
keyboard. Because “event” is defined in the same way across all platforms, the APIs for defining an

event to NetWeave are platform-specific. For example, the define_event functions on UNIX are

based on a File Handle (File *) while the define_event function on MVS is based on VMS Event

Flags. For a complete description of nwds_sleep and its parameters, see the NetWeave API Guide.

Exiting from Sleep Forever

Sleep forever is the simplest mechanism to use in a fully asynchronous program, because you can define
all your connections when the program is initialized and then let the main loop sleep forever.
Sometimes, however, it is convenient to return to the main program loop – if only to do some post-
processing after all NetWeave operations are completed. There are two ways to escape from a Sleep
Forever call:

• Set a callback to use the item list type NWDS_KERNEL_EXIT to tell NetWeave to terminate

its current sleep forever processing loop.

• Use nwds_sleep_callback, which is more flexible than NWDS_KERNEL_EXIT but a bit
more complicated to use. Instead of instructing the main sleep loop to terminate, NetWeave

calls the user’s nwds_sleep_callback function to perform the desired action.

For more information about nwds_sleep_callback, see The NetWeave API Guide.

NWDS_KERNEL_EXIT example:

static int exitSleep(void)

{

 static char fname[] = "exitSleep";

 NWDS_ERRNO status;

 NWDS_ITEM_LIST items[2];

 items[0].type = NWDS_KERNEL_EXIT;

 items[1].type = NWDS_END_OF_LIST;

NetWeave Programmer’s Guide Version 2.0

January 2008 19

 status = nwds_sleep(-1L, items, NULL);

 if (status != NWDS_SUCCESSFUL) {

 nwds_msglog(NWDS_MLSERROR,"%s, nwds_sleep error %d", fname, status);

 return TRUE;

 }

 return FALSE;

} /*end exitSleep */

If you intend to use nwds_sleep_callback to exit from sleep forever, you must enter the sleep

forever loop with the special item list type NWDS_KERNEL_LOOP. The code fragment below shows
how to do this:

NWDS_ITEM_LIST items[2];

 items[0].type = NWDS_KERNEL_LOOP;

 items[1].type = NWDS_END_OF_LIST;

 status = nwds_sleep(-1L, items, NULL);

Making Connections in Asynchronous Mode

In a peer-to-peer environment, once a connection between two nodes is established, both members of a
messaging conversation can send any number of messages to a partner at any time. A connection
between two nodes consists of an active partner (the one who places the call) and a passive partner (the
one who waits for its partner to make a new call). By convention, the active partner is called the client
and the passive partner is called the server.

To enable a client to connect to a server, the server must make itself known to NetWeave by issuing

nwds_ipc_publish and specifying both a public name and a new call callback. The public name is

a group name in the NetWeave INI file that identifies which communications protocol the server is

using. The new_call_callback is the function that will be called when a client makes a new
connection.

To initiate a connection, the client calls nwds_ipc_connect and specifies a new data callback and
the public name to which it wants to connect. The public name must match the one that the server has
already published. NetWeave returns to the client application a handle for this connection. When a
message arrives on this channel, NetWeave will use the notification function to call the server’s new
data callback.

To complete the connection setup process, the server must issue nwds_ipc_accept. One of the

nwds_ipc_accept parameters is the new data callback that the server uses to process data that it
receives from the client. NetWeave returns to the server application a handle that identifies this
connection. If the server wants to reject the call, it must first accept the call to retrieve the handle

associated with the underlying connection, and then call nwds_ipc_shutdown to break the
connection.

NetWeave Programmer’s Guide Version 2.0

January 2008 20

Internal Queues for Asynchronous Messages

NetWeave maintains several internal queues for managing message delivery. As each asynchronous
message is received, NetWeave places it on one of these internal queues and then calls a notification
callback function to alert the application that there is a new message. You can specify the notification

callback as part of the call to either nwds_ipc_connect or nwds_ipc_accept.

The message recipient does not have to read messages within the context of the notification callback.
Rather, the designer may record in the application that a message is available and can be processed later.
Because NetWeave saves messages on behalf of the recipient application, there is no actual I/O

associated with the nwds_ipc_read call: NetWeave has already “read” the message and placed it on
an internal queue.

NOTE: A call to nwds_ipc_read is always synchronous and always retrieves messages from

a NetWeave internal queue.

NetWeave Programmer’s Guide Version 2.0

January 2008 21

Asynchronous (Queued) Message Services

Queued message services, which are always asynchronous, are used to connect autonomous
applications. Because queued messaging is connectionless, the interaction between applications consists
of a very simple unidirectional flow of information that does not require acknowledgment. The
middleware assures reliable message delivery and error recovery.

Queued messages are ideal for connecting two or more programs that have logically independent
algorithms, a situation that typically occurs in the workflow model of system design. An example of
workflow is an office comprised of autonomous departments. In this office, a purchase order moves
through sales, warehousing/delivery, accounting, and post-sales marketing. Each department performs
its operations with little or no interaction with other groups, and regards the other departments as black
boxes: it is clear what information goes in and what comes out, but internal operations are invisible.

Queued message services have much lower throughput statistics than do client-transaction services.
Because of the slower throughput, most queued messaging services have a scheme for prioritizing
messages: high priority messages have their own queue, and the message delivery software gives
preference to this queue.

How a Queue Works

A queue (also known as a FIFO, because messages are processed on a First-In, First-Out basis) provides
asynchronous message delivery that doesn’t require acknowledgment. A FIFO connects one or more
producer applications with one or more consumer applications. A producer puts messages at the tail of
the queue, and a consumer gets messages from the head of the queue, as shown below:

Producer

Producer

ConsumerFIFO

Figure 6. FIFO queuing environment

The client continues processing until it receives notification that an operation has completed.

Often, batch programs that were historically linked by tape transfers are instead loosely joined via a
queue – in which case the FIFO queue replaces the tape. This means that one or more producer
applications treat the queue as an endless tape, and the consumer process can continue as a batch
process that starts up, reads the FIFO until empty, closes it, reschedules itself and exits.

The queued message service is responsible for error control and recovery, often referred to as
guaranteed message delivery. The producer application’s responsibility for the information ends when
the queued message service is invoked. The consumer is guaranteed that all messages will be received
unchanged, in the order in which they were generated.

To guarantee that messages will be delivered no matter what CPU or communications subsystem
failures occur, NetWeave implements queues on disks instead of in memory. If you are concerned about

NetWeave Programmer’s Guide Version 2.0

January 2008 22

the extra disk activity that NetWeave imposes on an already too-busy system, you should use IPC
messaging instead of message queues. IPC messaging has higher throughput than queued messaging
because it does not store and retrieve messages from the disk.

To eliminate contention among producers and consumers, a NetWeave Agent controls input and output
to queues and communicates with the NetWeave library to store and retrieve the messages.

Producer

Producer

Consumer
FIFO

Agent

NW

NW

NW

Figure 7. The NetWeave Library and Agent relationship in a queuing environment

Queue Location

A NetWeave queue can be located on the producer’s computer, on the consumer’s computer, or even on
a third system connected to the producer and consumer. A queue is usually created on the producer’s
computer to allow the producer to continue operating even if the consumer’s system (or the network)
goes down. Figure 8 shows a queue located on the producer’s platform.

Producer

Producer

Consumer

FIFO

Agent

NW

NW

NW

Producer's CPU Consumer's CPU

Figure 8. Client side queue location

Another good location for a queue is on the most reliable system in the network: either the producer,
consumer, or a third system. Figure 9 shows a diagram of a queue located on an independent system:

NetWeave Programmer’s Guide Version 2.0

January 2008 23

Producer

Producer

Consumer
FIFO

Agent

NW

NW

NW

Reliable System

Figure 9. Queue located on (independent) reliable system

Queued Messaging Functions

Because queues are implemented as files on a disk, the NetWeave API for queued messages has the
following functions:

Function Description

nwds_file_open Opens a FIFO to read or write. NetWeave builds a connection
between the application and the Agent that controls the queue.

nwds_file_close Closes a FIFO. The file is closed and the connection is shut down.

nwds_file_write Allows a producer to add a message to the tail of the queue.

nwds_file_read Allows a consumer to read the first message from the head of the
queue.

nwds_file_position Used with nwds_file_read to read queues in transaction mode (see
below).

In addition to the functions that access queues, there are three other functions for managing queues that
you can call from applications dedicated to operations control:

Function Description

nwds_file_create Creates a FIFO.

nwds_file_remove Deletes a FIFO.

nwds_file_info Retrieves statistics about the current state of the queue.

NetWeave Programmer’s Guide Version 2.0

January 2008 24

To read a queue, a consumer can use either of the following NetWeave mechanisms:

Mode Description

Standard mode NetWeave updates internal pointers when the message is read. Use
standard mode if more than one consumer will process a queue.

Transaction mode When NetWeave reads a message, it doesn’t change the internal
pointers. After the consumer has finished processing the message, it
calls nwds_file_position to change the pointers. Use transaction
mode (with a single consumer per queue) to guarantee that no
message is lost if a consumer application fails.

Designs with Multiple Queues

If your system will encounter any of the following conditions, the system design may need to include
more than one queue:

• Transaction-oriented message processing (queue per consumer)

• The need to isolate a producer application from the network (queue at the producer’s system)

• Using queued messages with broadcast or IPC messages (multicast)

• Using multiple queues to implement multiple priority messaging

When a queue feeds a consumer on a system that uses transaction monitoring, you can lose messages
from the queue if a message is read from the FIFO and the transaction is aborted later in the processing
cycle. To protect against this type of message loss, open the FIFO with an item list set to read hold and

use nwds_file_position set to -1 to signal when processing is complete.

NOTE: Even if the consumer system does not have a TP monitor, transaction-oriented queue
processing may simplify application recovery.

If an application requires a queue per consumer, you can use the NetWeave Agent on each consumer’s
system to manage all I/O to and from the FIFOs, as shown in Figure 10:

Consumer
FIFO

Agent

NW

FIFO
ConsumerNW

Figure 10. A NetWeave Agent managing multiple queues

If a design includes a queue on the producer system and one or more queues on the consumer systems,
you may want to include another element of queue architecture, the Distributor application. The
NetWeave API makes it very easy to create a Distributor application. In Figure 11, a Distributor on the
consumer platform reads messages from the producer’s queue and writes them to one or more consumer

NetWeave Programmer’s Guide Version 2.0

January 2008 25

queues. The Distributor is a natural place to add logic that monitors queue statistics, and it can be set up
to do the following:

• Issue regular statistical reports about the number (and type) of messages processed

• Respond to messages from a network monitor program to report these statistics

NW FIFO

Consumer NW

Producer

Distributor

FIFO FIFO Consumer NW

Statistics

Producer's
CPU

Consumers' CPU

Figure 11. Multiple queues and a Distributor process on the consumer’s system

To build a simple, elegant multicasting delivery system, you can combine broadcast services with
queued message services. In multicast, a message is delivered to each receiving system – in this case, to
each consumer. For example, a host system broadcasts a message to a network of workstations. A
collector process on each workstation receives the broadcast and writes the message to a queue (or, for a
Distributor process, to more than one queue) on the consumer workstation.

Figure 12 does not display the Agents, although there is one on the producer system and another one on
the consumer system.

NW

Consumer NW

Producer

FIFO FIFO Consumer NW

Collector Collector

The producer broadcasts

on the LAN

Figure 12. Combining multicast and queued messaging

NetWeave Programmer’s Guide Version 2.0

January 2008 26

Sizing a Queue

NetWeave stores long messages as a series of segments. However, the application is not aware that the
messages are being broken up and restored. Although a particular platform’s disk subsystem determines
what the maximum segment size can be, within this limit you can specify whatever segment size you
want when you design the system.

The following parameters determine the size of a queue:

• Size of each message segment

• Number of segments per queue

If the FIFO will be used to deliver a mix of mostly small messages and an occasional large one, your
queue is more efficient if you set the segment size to accommodate the small messages and then allow
NetWeave to spread the large messages across several segments. If the mix contains equal numbers of
large and small messages, you can improve the queue’s throughput by setting the segment size to the
maximum message size, or to the maximum message size of the queue.

Expedited Messages

Because NetWeave has IPC message delivery to support OLTP, there is little incentive to add priority
mechanisms to the queued message delivery. If an application has a class of messages that require
immediate action, use IPC messaging or create a second high-priority queue that the recipient always
checks before reading the standard message queue. If an application has several types of messages with
differing processing priorities, use the Distributor design with multiple queues (see above) to build a
queued message system with priorities.

NetWeave Programmer’s Guide Version 2.0

January 2008 27

Broadcast Services

In message delivery by broadcast, one application (the sender or broadcaster) sends a message that will
be received by any number of applications (receivers or registrants) on the network. Although the
NetWeave API for broadcast services is part of the general IPC services, there are substantial
differences between IPC message services and broadcasts.

Broadcast messages are sent to and received from a group name in the INI file. One of the parameters in
the group specifies an IP port, identified by a number between 1 and 32K. IP ports numbered less than
1K, called the well-known ports, are reserved. (For the purposes of this discussion, we use the terms
port and INI file group interchangeably.) You may use a single port to exchange several classes of
messages between the same INI file group, or use multiple groups – more than one port – to subdivide
the broadcasts.

Within the set of messages being sent to a particular broadcast port, you can further subdivide messages
by filter class. The filter class is an integer that the application specifies as part of the NetWeave
broadcast API on both send and receive operations. For each message that it sends, a sender identifies
the port and filter class. In synchronous mode, a receiver reads all messages for a specified port and
filter class. In asynchronous mode, a receiver may associate with each port and filter class combination
a unique function to process the message type. How a sender broadcasts its messages (synchronously or
asynchronously) does not affect how the receivers read them: some may read messages synchronously,
others asynchronously.

It is easy to set up a sender to do broadcasts. For the function nwds_ipc_broadcast, you must

specify the group name of a broadcast entity, a filter class, and a message. Because broadcasts are
connectionless, you don’t have to set up any other sender functions. A receiver that reads broadcasts
synchronously is a single-threaded server. To design a synchronous receiver, use the following
functions:

Function Description

nwds_ipc_register Identifies the group and filter class you want to receive. NetWeave
returns a handle associated with this set of broadcasts.

nwds_ipc_read To begin receiving messages, call this function immediately after
nwds_ipc_register. Your application will block on nwds_ipc_read until
the next broadcast is received.

As with asynchronous IPC messages, NetWeave notifies the application as each message is received,
but holds each message in an internal queue until the application reads it. (Note the discussion in the
previous sections about internal queues.) To design an asynchronous receiver, use the following
functions:

Function Description

nwds_ipc_register Tells NetWeave what type of message (group name and filter class)
the receiver wants, and which callback function will be called when
that type of message is broadcast on the network. For each call to
nwds_ipc_register, NetWeave returns a unique handle associated
with the specified message type.

NetWeave Programmer’s Guide Version 2.0

January 2008 28

Function Description

nwds_ipc_options If needed, call nwds_ipc_options from the callback to determine how
large the incoming message is, or who sent it.

nwds_ipc_read From the callback, dequeue the message from the internal message
queue.

To use NetWeave’s broadcast services, senders and registrants must be connected by an IP backbone.
Broadcast services are implemented on top of UDP datagram services. (UDP, like TCP/IP, is an IP
protocol.)

By design, UDP datagram service is unreliable and connectionless, meaning that there is no context
saved between the delivery of one message and the next. Because the service is connectionless, the call

to nwds_ipc_broadcast does not have a handle associated with any underlying broadcast

mechanism, and the handle returned to the receiver by nwds_ipc_register is not associated with
any underlying communications. Instead, this handle identifies the internal queue of messages
associated with the group name and filter class for which the recipient registered.

The “unreliable” label also means that there is no guarantee that any given datagram will be delivered to
a particular node in the IP network. However, UDP does guarantee the internal integrity of each
datagram that is delivered, and NetWeave will provide reliable broadcast message delivery as defined
below:

• The rate of delivery is tunable to optimize the chance that each receiver will receive a given
packet.

• The system detects loss of individual packets at a given receiver.

• Lost packets can be recovered as long as the data rate is not already approaching the
application-defined maximum.

• The system detects unrecoverable interruptions in broadcast services and notifies the receiver.

There are two ways to ensure reliable NetWeave message delivery:

• Throttle a sender to prevent it from overwhelming the network or the intended receivers.

• Let a receiver recover from a failure to receive a particular packet.

The need to throttle a sender depends on the system’s processing load and the sender’s speed relative to
the slowest potential receiver to whom you want to send messages. Use a prototype broadcast
application, not your intuition, to measure what actually happens when your sender broadcasts to your
slowest receiver. To measure performance, use the NetWeave diagnostic and training tool TST.

For more information about using the INI file parameters THROTTLE_INTERVAL and

MAX_THROTTLE_INTERVAL, see the NetWeave Configuration Guide.

Think of a broadcast as a one-way flow of information from a sender to an unknown number of
receivers. To help ensure a reliable message delivery mechanism over datagram services, NetWeave lets
receivers send a limited number of control packets back to a sender. There are two types of control
packets:

NetWeave Programmer’s Guide Version 2.0

January 2008 29

Packet type Description

Resend Identifies one or more packets that were not received, and that should
be retransmitted by the sender.

Flow-control A request to the sender to momentarily suspend broadcasts to allow
the receiver to catch up.

Because system performance degrades quickly if significant numbers of control packets are generated
during broadcasting, NetWeave logs each control packet to the trace file. If your receivers are
generating an excessive number of control packets, consider throttling the sender.

To control when and how a receiver reacts to a missed packet, you can set the INI file parameters as
described in the NetWeave Configuration Guide. NetWeave maintains internal information (sequence
numbers) that senders can use to retransmit lost data, and receivers can use to either detect a missed
packet or identify and ignore any duplicate packets.

NetWeave Programmer’s Guide Version 2.0

January 2008 30

Data Server Services

Data server services allow all computers in the network to access a particular computer platform’s file
system. You can use database services to access relational database systems and legacy file systems
(both record-oriented and flat file). Legacy applications are commercial and scientific applications
written since the late 1970s that share one or more of the following features:

• The application resides on a single hardware platform.

• The user interface is the traditional character-oriented terminal.

• To access related application functions, you have to use menus and function keys.

• Application data are stored in record-oriented files.

• These records are typically accessed using keys and indices.

By providing open access to legacy databases, NetWeave lets a business preserve its substantial
investment in applications development while providing a migration strategy from legacy systems to
applications written for a distributed and heterogeneous environment. Figure 13 shows the typical
configuration of distributed applications that use data server services:

NW Agent
Remote

Client

Host File System

Figure 13. Typical data server configuration

From NetWeave’s point of view, accesses and updates originate on a client platform and are delivered
to the NetWeave Agent on the host (the computer where the files being updated and/or queried reside).
In a typical installation, the NetWeave Agent can access the local file system and perform these file
access functions on behalf of remote clients. The Agent is also responsible for all aspects of data
security and translation. For more information about security and data translation, see the topics
“System Security” on page 35 and “Data Translation Services” on page 37.

Flat Files

A flat file contains information in a structure known only to the application. Because there is no external
record definition or table schema that describes the structure of the data, only the logic of the application
knows the file structure. As seen and processed by the operating system, a binary flat file does not have
record structure. As long as you have a relative byte address, you can access information stored within
the flat file simply by transferring continuous streams of bytes to or from the disk.

Some systems use a special form of flat file for managing variable-length text strings. For the purposes
of this discussion, text files are considered flat files. Access to these types of text files is often limited to
sequential reads from the beginning and sequential writes to the end. On all platforms, you can use
NetWeave to access any flat file (binary or text) that can be processed according to the rules of ANSI C
I/O functions.

NetWeave Programmer’s Guide Version 2.0

January 2008 31

A binary file is a sequence of bytes of any length and any content. A text file in C is a contiguous set of
C strings. Each string may not exceed 255 bytes, though for some systems the limit is even lower.
Although each system may adopt its own rules about how to terminate a text string within a C file, input
to or output from a text file is always a C string, a series of printable bytes terminated by NULL.

Record-Oriented Files

Because each hardware manufacturer handles record-oriented files in its own way, it is hard to
generalize about NetWeave’s file access functions beyond the following:

• You can create and remove files.

• You can test for the existence of a file.

• All record-oriented systems support sequential data access (read from beginning, write to
EOF).

• Most systems support random retrieval of fixed-length records by relative record number.

• Most systems support random retrieval of variable-length records by keys and associated
indices.

The indexed sequential format is the most important form of record-oriented file structure. To make it
faster and easier to update individual records in the main file, the operating system builds an ancillary
collection of indices based on record and key definitions that you specify.

Because record access and file management information is system-specific, NetWeave relies heavily on
item lists to supply the customization required to process a record or file on a particular platform.
Although the basic NetWeave API and functions for accessing legacy files are the same across all
platforms, you must have a detailed understanding of how a remote file system works in order to access
it through NetWeave.

File Access Resources in the NetWeave Header File (netweave.h)

To build a distributed application that can access a file system on a particular platform, you must

understand the properties of the host you need to access. The main NetWeave header file netweave.h
provides a set of item list parameters that you can use for customized access to each supported file
system. An item list is an array of structures that contain the following three elements:

Element Description

Item type Found in netweave.h in the section for the particular hardware vendor.
The Item type identifies a specific optional parameter that is being
specified in this item list entry.

Length The length (in bytes) of the value of the item, determined by the item
type’s encoded class code.

Address The address in data storage where the value of the item is located. When
an item type is an enumeration, the possible values are also declared in
netweave.h.

NetWeave Programmer’s Guide Version 2.0

January 2008 32

To manage legacy files, use the following API functions:

Function Description

nwds_file_info Determines whether the file exists. If it does, returns statistics about the
file’s current structure and content (the number of records).

nwds_file_create Creates a new disk file whose characteristics are determined by system-
specific item list elements that you specify.

nwds_file_remove Removes (erases) a file from the disk.

nwds_file_open Opens an existing file as specified in the item list that you define, and
returns a handle that the application can use for future operations on
that file.

nwds_file_close Closes a file and releases any resources associated with it.

To access and update records, use the following functions:

Function Description

nwds_file_position Selects a current record for future operations.

nwds_file_read Retrieves the record, and may lock it for to prevent future updates.

nwds_file_write Adds a new record to the file.

nwds_file_delete Deletes the current record from the file.

nwds_file_update Changes the current record (first removes the lock, if needed).

Asynchronous Notification of File Changes

NetWeave has a powerful mechanism for building distributed applications that can react quickly to
change. In contrast to the repetitive, operator-intensive model of bulk file transfers and the scheduled
batch jobs for processing them, NetWeave provides “trigger” functions that notify applications about
file changes as they occur.

Figure 14 shows client #1 updating a record in the file. When the update is completed, the Agent
notifies client #2 of the change. It does not matter where the client applications are located – either one
or both may be local or remote.

NetWeave Programmer’s Guide Version 2.0

January 2008 33

NW

Agent

Client

Host File System
NW

Client

(file changes)

(notification
of the changes)

#1

#2

Figure 14. File trigger operations

To build an application that uses file triggers, use the following functions in this order:

Function Description

nwds_file_open Returns a trigger handle for NetWeave to use in subsequent
operations.

nwds_trigger_register Allows an application to register for any combination of adds,
updates or deletes. The application supplies a (notification) callback
procedure for NetWeave to call when a change occurs.

nwds_trigger_read To add a new record or delete an old record, NetWeave returns the
record image that was added or deleted.

If a record was changed, NetWeave returns the images of the record
both before and after the change. Often nwds_trigger_read is called
from the notification callback registered with NetWeave.

nwds_file_close Closes the file and removes the registrations.

Using NetWeave’s SQL Interface to Access Relational Databases

NetWeave provides a powerful set of functions for accessing and updating information in relational
databases. Although these functions provide a standard interface to all databases that can be accessed
through a dialect of SQL, the application is responsible for correctly forming queries and updates in the
dialect of the particular target database.

Tandem NonStop SQL

All functions in the nwds_sql API are available for NonStop SQL. The NetWeave Agent for Tandem
keeps a static pool of special programs (the NSSQL servers) that supply the SQL services and maintain
SQL context information for remote client applications. When the Agent is started, NetWeave uses the
same script that starts the Agent to create the NSSQL servers, either under user control or as part of the
system boot sequence. Each server must have a unique name that is specified with INI file entries.

For example: the command to start a NSSQL server named $NS1 can accept two runtime parameters,
the root group and the INI file. Normally an NSSQL server uses the same INI file as the Agent. If you

NetWeave Programmer’s Guide Version 2.0

January 2008 34

want the server to use a different INI file, change the root group and root INI file parameters passed at
startup by entering the following:

run nssql/name $NS1/NS1 nwdsini

To work properly, the Agent’s INI file must contain a well-known group called [SQLCONNECT

group]. This group recognizes a single entry (CLASS) that lists the names of the groups associated
with each of the NSSQL servers.

The example below shows a static pool of two NSSQL servers, one with root group NS1, the other with
NS2. The Agent uses NetWeave’s DOLLAR_RECV protocol to communicate with the processes
named $NS1 and $NS2.

[SQLCONNECT]

CLASS = { NS1, NS2 }

[NS1]

LOCAL_PROTOCOL = 1

PROTOCOL = DOLLAR_RECV

TANRECV_PROCESS = $NS1

@TRACE_FILE@ = $S.#NS1

[NS2]

LOCAL_PROTOCOL = 1

PROTOCOL = DOLLAR_RECV

TANRECV_PROCESS = $NS2

@TRACE_FILE@ = $S.#NS2

To install a NSSQL server in the Tandem SQL environment, use the NonStop SQL compiler to link
with your catalog as follows:

sqlcomp/in nssql/ catalog <your catalog>, explain

NetWeave Programmer’s Guide Version 2.0

January 2008 35

System Security

The NetWeave API functions that implement security provide a platform-independent authentication
interface that is same across every platform. Because the O/S vendor already provides system-level
security, NetWeave’s function here is to provide wire-level (as opposed to system-level) security. In
addition, NetWeave implements a challenge/response mechanism that the application may also use, if
desired.

The illustration below shows the differences between OS validation and challenge-response when using

the functions nwds_logon, nwds_password, and nwds_logoff. This diagram applies to both
message-oriented middleware and data server services:

NW

Server

NW

Client

Agent

[NW_SERVER]

PUBLIC_NAME = {SECURE}

nwds_logon(SECURE::,...)

ipc_connect(SECURE::SERVER,...)

nwds_password(...)

Figure 15. NetWeave security diagram

For IPC messaging, the Agent controls access to the application server by routing all communication
between client and server through the Agent (named SECURE in this example). In this capacity, the
Agent acts as a firewall for the server.

For queued message services and client database services, you can access the files of the host system or
queues on another platform only through the NetWeave Agent. When authentication is enabled at an
Agent, all functions are rejected until the remote client successfully finishes logging on.

NetWeave Programmer’s Guide Version 2.0

January 2008 36

Figure 16 shows how the Agent generates a challenge string (a stream of bytes) that is returned to the
client in the response to the logon request. If the client is who it claims to be, it changes the challenge

string to a unique response string that is returned to the Agent via the nwds_password command. For
example, if the client’s algorithm specifies that each vowel be replaced by its succeeding consonant, a
challenge of “who are you?” will result in a response of “whp brf ypv?”

NW

Server

NW

Client

Agent

[NW_SERVER]

PUBLIC_NAME = {SECURE}

nwds_logon(SECURE::,...)

ipc_connect(SECURE::SERVER,...)

nwds_password("whp brf ypv?".)

Agent's challenge: "who are you?"

Figure 16. NetWeave challenge-response mechanism

NetWeave Programmer’s Guide Version 2.0

January 2008 37

Data Translation Services

Data translation is useful for representing data in a consistent way across different computer platforms.
If you are using one of the three forms of message-oriented middleware (IPC messaging, queued
message services, or broadcasts) and all of the platforms in your system use the same character
encoding scheme, you can avoid data translation altogether by constructing your messages entirely of
character (printable) data. Although messages composed entirely of characters are much easier to read
and debug during development, the message size tends to be larger and character/numeric translation is
slower.

The following hardware platform characteristics determine whether you need to consider data
translation in your design:

Issue Explanation

Character encoding scheme
(ASCII or EBCDIC)

The following NetWeave-supported platforms use EBCDIC:

• IBM mainframes

• AS/400

• Unisys A Series architecture

All others use ASCII.

Byte ordering in numeric data
types (big endian vs. little endian
architectures)

In big endian machines, the low-order byte is on the left.
Big endian machines include IBM mainframes, Tandem,
Stratus, and all UNIX systems except those implemented on
Intel-compatible chips.

Little endian machines have the low-order byte on the right.
Little endian machines include VMS and OpenVMS from
Digital, all PCs, and UNIX systems built on Intel-compatible
chips.

Defining Data to NetWeave

To define the structure of a message or record to NetWeave, use the following syntax to create groups in
your INI file:

[MyData]

DDL_ENTRY=1

DDL_NUM_FIELDS=3

DDL_FIELD_1=SHORT 2

DDL_FIELD_2=LONG 4

DDL_FIELD_3=STRING 20

In the example above, note the following:

1. The group [MyData] has three fields: a 16-bit integer, a 32-bit integer, and a variable-length
string up to 20 characters (including the NULL terminator).

2. The token DDL_ENTRY is a binary entry whose default is 0 (false).

NetWeave Programmer’s Guide Version 2.0

January 2008 38

3. If DDL_NUM_FIELDS is present and non-zero, NetWeave expects it to indicate how many
definitions will follow.

4. Field definitions have the format <type length>, where type is one of the following:

• SHORT: length must be 2 to indicate a 16-bit integer

• LONG: length must be 4 to indicate a 32-bit integer

• CHAR and STRING may take arbitrarily large lengths. (For STRING, the length is a
maximum, and the field contains a NULL-terminated string of bytes).

Message Translation

Each message that NetWeave needs to translate must be defined in a unique group in the INI file of each
system that will handle the message. On the sender’s side, do the following:

1. Add the item type nwds_ipc_convert_name to the nwds_ipc_write call.

2. Set the value of the item list entry to a string of bytes containing the name of the group.

On the receiver’s side, the message format determines which translation procedure should be used:

1. If all messages from a given sender have the same format, identify the sender by calling

nwds_ipc_options. Then, call nwds_ipc_read with the item type again set as it was for the
sender.

2. If a sender transmits more than one form of a message, the receiver must interrogate the
message to determine how to decode it. Buried in the message are clues to its format.

To determine the location of your clues in an incoming message, you need to understand how
NetWeave transfers data between systems. NetWeave encodes all character data as ASCII for
transmission. Both 16-bit and 32-bit fields are transferred in four bytes, and the fields are “byte-stuffed”
so that each field begins on a 32-bit (four-byte) boundary.

Often the receiving application is an existing program that cannot be changed. Therefore, the sending
application must construct the message in the exact format that the receiver expects to read it, and it
must interpret the reply from the stream of bytes that the receiver returns. In these cases, the simple
message translation features in NetWeave may be inadequate, and you may want to consider the

powerful translation features in evolve middleware from Vertex.

Record Translation

The INI file group that defines a user’s file record layout must contain the structural definition of a
record. Although this means that the file can contain only one record definition, it also simplifies the
translation process. If the INI files on both the client side and the Agent side contain the same definition
of the record, translation occurs automatically.

NetWeave Programmer’s Guide Version 2.0

January 2008 39

Threaded Service

A thread is a unit of programming logic that performs the same functions as a program or process, but
uses fewer system resources than a traditional process would. Threads typically operate within the
context of a process, and are able to share many process resources within other threads within that
process. Each thread has its own call stack and CPU state.

The input from the mouse, output to the monitor, a socket, a file descriptor – all are examples of system
resources. A given system resource may belong to either the process as a whole or to an individual
thread. A resource that belongs to the process is considered a process-based global resource. A resource
that belongs to a thread is considered thread-based, and can be accessed only by that thread.

NetWeave provides both synchronous (blocking) and asynchronous versions of most functions.
Although services written with synchronous calls are easier to understand and maintain, they cannot be
expanded easily to service increasing numbers of requests. Servers that use asynchronous function calls
are called multi-threaded because they can process an arbitrarily large number of service requests
simultaneously. Because the callback mechanism is supported on all platforms, NetWeave uses it for
asynchronous function calls.

Multi-threaded programming increases the amount of parallel processing within a larger application
process, which improves performance and allows for more efficient use of system resources. In many
ways, a multi-threaded architecture has the same benefits as an asynchronous program, with the
additional benefit that each thread is implemented using a simple synchronous programming model,
making it easier to implement and debug. A thread therefore, provides a mechanism for using
synchronous communications in an asynchronous environment.

NetWeave uses both process-based resources and thread-based resources. The INI file parameters and
the output to the common trace file are process-based resources, because each thread that uses

NetWeave services within a given process shares these resources. Each nwds_handle obtained from
a NetWeave function call is a thread-based resource, and cannot be shared between threads within a

process. An nwds_handle is analogous to either a TCP/IP socket or a descriptor for a disk file other
than the trace file.

Each thread that makes a NetWeave call is referred to as a NetWeave thread. A NetWeave thread must

call nwds_init before calling any other NetWeave function, and it must call nwds_exit before the
thread exits. To provide the process-based resources, we recommend that you use a master thread to

make the initial call to nwds_init, and then have this thread create all other NetWeave threads. When

the master thread exits, it must be the last thread to call nwds_exit.

There is another, technical sense of "thread" that refers to a different mechanism for handling
simultaneous service requests. (This mechanism is supported on Windows NT and UNIX, but not on
IBM/CICS or Tandem.) A thread is called a lightweight process because each thread has its own
execution stack and therefore cannot affect the operation of another thread. It takes less processor time
to create and destroy a thread than it does to start and stop a regular process.

In the classic UNIX client-server model, the server receives a connection and then starts a child process
to service that connection. (In UNIX jargon, this is called fork and exec.) The child process is dedicated
exclusively to that connection, and lasts only as long as the connection does. In UNIX, processes can
share handles, and the handle for the connection is one of the parameters passed to the process. Because
the functions of one thread cannot affect those of another, a blocking call in one thread does not block
execution of other threads. Therefore the child process is created as a single-threaded service that makes
only synchronous or blocking calls.

NetWeave Programmer’s Guide Version 2.0

January 2008 40

In contrast to the UNIX model, threaded implementations cannot share handles. To circumvent this
restriction, NetWeave includes a Dispatcher to provide a client-server solution that closely resembles
the UNIX model. The Dispatcher creates an environment in which each worker thread can use
synchronous NetWeave function calls without affecting other worker threads.

To start and manage a Dispatcher, use the following functions:

Function Description

nwds_dispatcher_create Creates a NetWeave Dispatcher thread that will operate within
the context of the calling application.

nwds_dispatcher_stats Obtains current statistics on the specified Dispatcher, including
messages and thread counts since startup.

nwds_dispatcher_stop Terminates a Dispatcher.

As each new connection arrives, the Dispatcher creates a new thread (the worker) to service the requests
delivered over the connection. The Dispatcher also solves the programming difficulties of associating
handles associated with external connections and handles known to a particular worker. Because this is
all performed in the background by another thread (the boss) created by the

nwds_dispatcher_create function, the caller’s program is free to do other things.

Any programming language that supports binding to a C function pointer may use the Dispatcher
functions. NetWeave uses a C language function pointer to identify the worker routine to the
Dispatcher. Each Dispatcher requires a unique set of three public names, called publish names:

• External publish name: provides connection for external clients.

• Internal publish name: provides connection for application-provided worker threads.

• Control publish name: retrieves statistics and shuts down the Dispatcher.

When the Dispatcher accepts an external connection, it also creates a worker thread to service the
requests on that connection. This worker thread establishes an internal connection with the Dispatcher,
which then links the external and internal connection to form a virtual connection. The worker thread
executes the function that the application has requested. Once created, a Dispatcher will run indefinitely,
even if it is not servicing any connections.

NOTE: When developing an application for the Dispatcher environment, it is a good idea to

periodically use the nwds_dispatcher_stats function retrieve Dispatcher statistics such
as the number of active service threads (connections) and the total number of messages that have
passed through the Dispatcher.

NetWeave Programmer’s Guide Version 2.0

January 2008 41

Topics for Programmers

The information in this section assumes that you have already chosen the tools for your system, that the
design is adequate for configuring the NetWeave INI files (as described in the NetWeave Configuration

Guide), and that you are looking for practical tips for coding and testing NetWeave applications.

Middleware facilitates the interoperability and portability of programs in a distributed computing
environment. One of the major tradeoffs of making a particular function call is the desire to simplify the
call versus the need to provide access to specific features of a particular hardware vendor’s operating
system.

NetWeave functions may be called either synchronously or asynchronously. A synchronous operation
completes within the context of the call: when the function returns, the operation is completed. An
asynchronous operation, on the other hand, completes some time after the initiating function call
completes: when this call returns, the programmer knows only that things have started properly.

A NetWeave application may be built in any programming language that can call C functions.
NetWeave itself is written in ANSI C because this is the only language with sufficient technical
resources (communications and file system interfaces) that is implemented in the same way on every
hardware platform. Although the “Sample NetWeave Programs” section on page 78 includes
programming examples written in other common languages (COBOL85, ALGOL, Visual Basic), the
information below assumes that you are familiar with C conventions and data types.

Keep in mind the following useful tips for application authoring:

• Prototype your first NetWeave application with synchronous calls.

• Do not mix synchronous and asynchronous calls in the same application.

• Where possible, unit test your distributed application in loopback mode on a single platform.

• Be generous when creating timeouts to your applications.

The NetWeave Header File

To learn about the NetWeave API, the best place to start is the NetWeave header file, netweave.h.
This file defines all enumerations, constants, typedefs, and prototypes in the public NetWeave API.
Every NetWeave application must include the appropriate NetWeave header file.

Every release of the API includes the latest version of netweave.h. The following languages and
header files are used for NetWeave application authoring:

Language Header file

C netweave.h

PowerBuilder netweave.pb

16 bit Visual Basic netweave.vb

32 bit Visual Basic netweave.vb5

NetWeave Programmer’s Guide Version 2.0

January 2008 42

Enumerations and Constants

In C, an enumeration is a set of comprehensive and mutually exclusive constants that cover a variable’s
range of values. The most important NetWeave enumerations are listed below:

Name Description

NWDS_ERRNO_ENUM The list of return codes, most of which indicate fatal errors. Each
NetWeave function returns one of the codes in this list. The
“good” return codes are:

• NWDS_SUCCESSFUL

• NWDS_PENDING (returned when an asynchronous
operation has started successfully)

NWDS_SYSTEM_ENUM The list of systems that NetWeave supports. The system codes
are returned by calls to nwds_system_type and nwds_ping and
become input parameters to nwds_convert_data (the function
that converts data from one system format to another).

NWDS_DATA_ENUM The list of supported data types, which are especially important
for constructing item lists and performing data conversion. The
low-order nibble (4 bits) of each item type in an item list indicates
the item type’s data type. For more information about item lists,
see page 44.

Most runtime parameters (parameters that control operations in
NetWeave and are determined when the program executes) are
specified in the NetWeave configuration INI file. An important
exception is NWDS_MAX_USER_SIZE (see below).

NWDS_MAX_USER_SIZE The maximum size of a single application message (32567
bytes).

NetWeave Programmer’s Guide Version 2.0

January 2008 43

Typedefs

In C, a typedef is a data type constructed from more primitive data types. Typedefs help the compiler

detect syntactical errors in your program. The table below lists the main netweave.h typedefs:

Data type Description

NWDS_HANDLE An arbitrary value that uniquely identifies an object for a series
of related function calls. NetWeave generates handles and
associates them with partner processes, open files,
transactions, file triggers, and broadcasts.

NWDS_CONTEXT One of the most important (and most abstract) concepts in
NetWeave. Context means whatever information NetWeave
needs to associate with a particular function call. For more
information about context, see page 56.

NWDS_ITEM_LIST A NetWeave application uses item lists to pass system-specific
information between the application and NetWeave.

NWDS_CALL_BACK_PROC A callback procedure uses the following two arguments and
does not return a return code:

• NWDS_CONTEXT is the information you asked
NetWeave to remember when you initiated the function
call that caused the event associated with the callback
procedure.

• NWDS_ERRNO is the status of the event that initiates
the callback.

NWDS_CALL_BACK_PROC is an essential component of
asynchronous (event-driven) programming. As NetWeave
implements the asynchronous model, the programmer links
functions (callback procedures) with events.

NWDS_CALL_BACK The NWDS_CALL_BACK structure contains the following:

• The information (context) that NetWeave needs for this
call.

• The name of the callback procedure NetWeave will call
when the function completes.

If NWDS_CALL_BACK is present when a NetWeave function is
called, the call will be made asynchronously.

NetWeave Programmer’s Guide Version 2.0

January 2008 44

Item Lists

NetWeave uses item lists to extend the basic operation of its API. To use the NetWeave API’s advanced
features, you need to understand how lists work. One of the major tradeoffs for any function call is the
desire to simplify the call versus the need to provide access to specific features of a particular hardware
vendor’s operating system. NetWeave uses item lists to specify system-specific parameters within the
context of a simple API. There are two kinds of item lists:

List type Description

Control item list Contains the parameters and values that change how the function will
be performed on the target system.

Return item list Contains the parameters for which values will be returned when the
call completes on the target system.

An item list is a variable-length array of parameters. A unique type, NWDS_END_OF_LIST, identifies
the last element. Each element (item) in the array has three components:

Component Description

Type A constant from netweave.h that identifies a parameter (the name of
the parameter).

Length The length of the parameter value. Most parameters are either 16-bit
integers (NWDS_SHORT) or 32-bit integers (NWDS_LONG).
Variable-length parameters are considered to be of type
NWDS_CHAR. For a return item list, the length is the maximum
number of bytes that can be copied to the destination location.

Pointer to value For a control item list, this is the address of the location in memory
where the value of the parameter is stored. For a return item list, this is
the address in which to store the returned value.

NOTE: Most NetWeave functions contain at least one parameter for an item list. Where
possible, you should use the control parameter default values to avoid using an item list
altogether. To indicate that there is no item list, set the associated itemlist parameter to NULL.

The bulk of netweave.h consists of definitions of item types for specific hardware vendors and/or
NetWeave functions. Whereas the item types for queued messaging and data translation apply across all
platforms, the item types for data server calls are unique by hardware vendor. The names of platform-
specific item types and enumerated values are chosen to match a parameter and value on the target
system. It is assumed that a programmer using data server calls has access to the system reference
manuals for the target platform for obtaining more specific information.

For languages such as COBOL85 that cannot assign addresses in memory, NetWeave supplies several
functions for loading item lists. At the other end of the spectrum, C programmers have a choice of
several methods for loading an item list. The sample code below shows how to build a control item list

to pass to nwds_file_open to open a FIFO for standard processing.

NetWeave Programmer’s Guide Version 2.0

January 2008 45

char *fname;

NWDS_HANDLE handle;

NWDS_ITEM_LIST ilist[3];

short file_type_fifo = NWDS_FILE_TYPE_FIFO;

short fifo_read_new_pos = NWDS_FIFO_READ_NEW_POS;

NWDS_ERRNO status = NWDS_SUCCESSFUL;

/* identify the file to open... */

/* load the item list */

status = nwds_item_load_short (ilist, 0, NWDS_FILE_TYPE,

 &file_type_fifo);

if (status != NWDS_SUCCESSFUL) {

 /* error recovery... */

}

status = nwds_item_load_short (ilist, 1, NWDS_FIFO_SHARING,

 &fifo_read_new_pos);

if (status != NWDS_SUCCESSFUL) {

 /* error recovery... */

}

status = nwds_item_load_short (ilist, 2, NWDS_END_OF_LIST, NULL);

if (status != NWDS_SUCCESSFUL) {

 /* error recovery... */

}

status = nwds_file_open (fname, &handle, ilist, NULL);

if (status != NWDS_SUCCESSFUL)

{

A more concise and intuitive version of the same snippet:

/* initialize the item list */

NWDS_ITEM_LIST ilist[] =

 {NWDS_FILE_TYPE, sizeof(short), &file_type_fifo,

 NWDS_FIFO_SHARING, sizeof(short), &fifo_read_new_pos,

 NWDS_END_OF_LIST, 0, NULL };

status = nwds_file_open (fname, &handle, ilist, NULL);

if (status != NWDS_SUCCESSFUL) {

The call to nwds_file_info below shows how to use a return item list to determine how many
records are in a particular queue:

#define fname “FIFO-1”

short file_type_fifo = NWDS_FILE_TYPE_FIFO;

long number_of_fifo_records = 0;

NWDS_ERRNO status = NWDS_SUCCESSFUL;

NetWeave Programmer’s Guide Version 2.0

January 2008 46

/* define and initialize the control item list */

NWDS_ITEM_LIST control_list [] =

 {NWDS_FILE_TYPE, sizeof(short), &file_type_fifo,

 NWDS_END_OF_LIST, 0, NULL};

/* define and initialize the return item list */

NWDS_ITEM_LIST return_list [] =

 {NWDS_FIFO_NUMBER_RECORDS,sizeof(long), &number_of_fifo_records,

 NWDS_END_OF_LIST, 0, NULL};

status = nwds_file_info (fname, control_list, return_list, NULL);

if (status != NWDS_SUCCESSFUL) {

NetWeave Programmer’s Guide Version 2.0

January 2008 47

Programming Tips: Synchronous Calls

NetWeave functions may be called either synchronously or asynchronously, depending on how you
want the function call to complete. An asynchronous operation does not complete upon return to the

caller. Instead, it returns a status code of NWDS_PENDING, and will at another point invoke a caller-
specified callback function with the completion status.

NOTE: It is possible that the callback function may have been called already when the original

call returns NWDS_PENDING.

In contrast, a synchronous operation completes within the context of the call: when the function returns,
the operation is completed. During the operations associated with the function call (some of which occur
on a different computer), your program is suspended. It has to wait for each synchronous call to
complete before it continues with the next operation.

A synchronous program uses only synchronous function calls. Synchronous programs are easier to read,
maintain, and debug because the sequence of operations tends to match the steps in the design algorithm
(the pseudo-code). Most NetWeave function calls contain a parameter for at least one callback function.
To perform an operation synchronously, set the callback parameter to NULL.

NOTE: In the previous section, the examples of how to specify item lists use synchronous calls.

The main disadvantage of a synchronous server application is poor scalability. Because a synchronous
server processes each request serially, it can service only one external connection at a time. To
overcome the scalability limitation while preserving the simplicity of synchronous coding, NetWeave
created the Dispatcher. For more information about the Dispatcher, see “Threaded Services” on page 35.

Example #1: Synchronous Calls in a Client-Server Environment

This example shows how a synchronous client application connects to a synchronous, single-threaded
server application on another computer. (A synchronous client may have simultaneous connections with
more than one server; a single-threaded server services only one client at a time.)

The server begins the connection sequence by calling nwds_ipc_publish. One of the call
parameters is the public name to which the client will connect. This public name identifies the INI file
group that must match the corresponding name and INI group parameters in the client’s call to

nwds_ipc_connect. When the nwds_ipc_publish call returns, the server program receives a
handle for its public connection.

Next, the server uses the public handle to call nwds_ipc_accept and waits for a connection from a

remote client. When nwds_ipc_accept completes, the server application receives another “private”
handle that uniquely identifies the conversation with this remote client.

#define server "SERVER"

NWDS_ITEM_LIST ilist[] = { NWDS_END_OF_LIST, 0, NULL };

NWDS_HANDLE public_handle;

NWDS_HANDLE private_handle;

status = nwds_ipc_publish(server,

 &public_handle,

NetWeave Programmer’s Guide Version 2.0

January 2008 48

 ilist,

 NULL,

 NULL);

if (status != NWDS_SUCCESSFUL) {

 /* error recovery... */

}

status = nwds_ipc_accept(public_handle,

 &private_handle,

 ilist,

 NULL,

 NULL);

if (status != NWDS_SUCCESSFUL) {

 /* error recovery... */

}

When the server application reaches the point where it is waiting on its nwds_ipc_accept call, the

remote client can connect to it. The client issues nwds_ipc_connect with the public name of the
server. When the connection is successfully established, the client receives a private handle that
identifies the conversation with this particular server.

#define server "SERVER"

NWDS_HANDLE ipc_handle;

status = nwds_ipc_connect(server,

 &ipc_handle,

 NULL,

 NULL,

 NULL);

if(status != NWDS_SUCCESSFUL) {

NetWeave Programmer’s Guide Version 2.0

January 2008 49

Example #2: Infrastructure

This example illustrates several of the activities that support the NetWeave API:

Activity Description

Initialization Calls nwds_init before any other functions in the API.

Cleanup Calls nwds_exit to terminate all use of NetWeave resources.

Suspending operation Calls nwds_sleep to suspend for a specific interval.

Decoding errors Calls nwds_error_text to translate return codes to text
strings.

Recovering from network failures Puts it all together.

The numbers in parentheses to the right refer to additional comments, which appear at the end of this
code example.

#include "netweave.h" (1)

#define server "SERVER"

#define ini_file "netweave.ini" (2)

#define ini_group "CLIENT" (2)

static NWDS_HANDLE ipc_handle;

NWDS_MILLISECONDS wait_interval = 5000; (7)

void oops (NWDS_ERRNO, char *); (3)

int main(void)

{

 NWDS_ERRNO status;

 if(NWDS_SUCCESSFUL != nwds_init(ini_file, ini_group)) { (2)

 printf("can't open ini,group (%s,%s)\n", ini_file, ini_group);

 return 0;

 }

 for (;;) { (4)

 printf("before nwds_ipc_connect\n");

 status = nwds_ipc_connect(server,

 &ipc_handle,

 NULL,

 NULL,

 NULL);

 if(status != NWDS_SUCCESSFUL && (5)

 status != NWDS_LINK_DOWN) {

 oops(status, "nwds_ipc_connect failed");

NetWeave Programmer’s Guide Version 2.0

January 2008 50

 (void)nwds_exit(); (8)

return 0;

 }

 if (status == NWDS_LINK_DOWN){ (6)

 oops(status, “trying again...”);

 (void)nwds_sleep (wait_interval, NULL, NULL); (7)

 continue;

 }

 printf("nwds_ipc_connect successful\n");

/* All preliminaries are complete; now get to work. */

/* Work is all done; shut ‘er down. */

 status = nwds_ipc_shutdown(ipc_handle,

 NULL,

 NULL);

 if(status != NWDS_SUCCESSFUL) {

 oops(status, "nwds_ipc_shutdown failed");

 }

 break;

 }

 printf("success\n");

 (void)nwds_exit(); (8)

 return 0;

}

void oops (NWDS_ERRNO status, char *msg) (3)

{

 #define MAX_STRING 255

 char buffer[MAX_STRING];

 int offset;

 memset(buffer, ' ', MAX_STRING);

 offset = strlen(msg);

 memcpy (buffer, msg, offset++);

 buffer[offset] = ':';

 offset += 2;

 nwds_error_text(status, &buffer[offset]); (9)

 printf("%s\n",buffer);

 return;

}

Notes for example #2:

1. Every NetWeave application must include netweave.h.

2. Nwds_init tells NetWeave where to find the runtime configuration parameters.

NetWeave Programmer’s Guide Version 2.0

January 2008 51

3. Oops() is a simple error handler that accepts a message and displays the message with the
text of the error message.

4. This loop controls the client’s attempts to connect to the server. If the connection fails, the
program pauses for five seconds and retries the connection.

5. A test for fatal errors.

6. A test for a failed connection.

7. There are four ways to use nwds_sleep. Usually the program pauses for a specified interval
(measured in milliseconds).

8. To release NetWeave resources, call nwds_exit.

9. To convert a return code to a text message, use nwds_error_text.

Example #3: A Simple Distributor for Queued Messages

This example shows a simple synchronous process called a Distributor. For the purposes of this
example, let’s assume that:

• Multiple producer processes on remote platforms all write to a common queue on your system.

• There are multiple consumer processes on your system, each with its own queue for input.

The Distributor’s job is to consume the common input queue and then assign each message to the right
consumer.

NW

Consumer
NW

Producer

Distributor

Consumer
NW

NW
Producer

Queue_In

Queue_Out_1 Queue_Out_2 #2#1

Alpha Beta

Figure 17. Synchronous message distribution example program

In the main loop, the Distributor reads the input queue, calls the application-specific routine

which_one to decide where to write the message, and then writes the message to the appropriate

queue. The main routine handles housekeeping details such as calling nwds_init and nwds_exit.

The function fifo_read checks the input queue. If the queue is empty, fifo_read sleeps. It does
not return until it either reads a message or encounters a fatal error.

NetWeave Programmer’s Guide Version 2.0

January 2008 52

The routine open_all_queues defines which queues should be opened. In this simple example the
queue names are hard-coded, but in a more robust example they would be externally defined and passed
into the application.

#include <stdlib.h>

#include <stdio.h>

#include netweave.h

#define FIFO_OPEN_FOR_WRITE 0

#define FIFO_OPEN_FOR_READ 1

#define ini_group "DEMO"

#define ini_file "nwds.ini"

#define max_message_size 500

NWDS_HANDLE queue_in;

NWDS_HANDLE queue_out_1;

NWDS_HANDLE queue_out_2;

NWDS_SIZE message_size;

char fifo_message[max_message_size];

char buffer[NWDS_MAX_STRING];

NWDS_ERRNO fifo_open (char *fname, NWDS_HANDLE *handle, int how)

{

NWDS_ERRNO status = NWDS_SUCCESSFUL;

NWDS_ITEM_LIST ilist[4];

short file_type_fifo = NWDS_FILE_TYPE_FIFO;

short fifo_append_only = NWDS_FIFO_APPEND_ONLY;

short fifo_read_new_pos = NWDS_FIFO_READ_NEW_POS;

 status = nwds_item_load_short (ilist, 0, NWDS_FILE_TYPE,

&file_type_fifo);

 if (status != NWDS_SUCCESSFUL) {

 (void)nwds_error_text(status, buffer);

 printf("%s\n", buffer);

 return status;

 }

 if (how == FIFO_OPEN_FOR_WRITE) {

 status = nwds_item_load_short (ilist, 1, NWDS_FIFO_SHARING,

&fifo_append_only);

 } else {

 status = nwds_item_load_short (ilist, 1, NWDS_FIFO_SHARING,

&fifo_read_new_pos);

 }

 if (status != NWDS_SUCCESSFUL) {

 (void)nwds_error_text(status, buffer);

NetWeave Programmer’s Guide Version 2.0

January 2008 53

 printf("%s\n", buffer);

 return status;

 }

 status = nwds_item_load_short (ilist, 2, NWDS_END_OF_LIST, NULL);

 if (status != NWDS_SUCCESSFUL) {

 (void)nwds_error_text(status, buffer);

 printf("%s\n", buffer);

 return status;

 }

 status = nwds_file_open (fname, handle, ilist, NULL);

 if (status != NWDS_SUCCESSFUL) {

 (void)nwds_error_text(status, buffer);

 printf("%s\n", buffer);

 }

 return status;

}

void open_all_queues (void)

{

NWDS_ERRNO status;

char *q1 = {"QUEUE_IN"};

char *q2 = {"QUEUE_OUT_1"};

char *q3 = {"QUEUE_OUT_2"};

 status = fifo_open (q1, &queue_in, FIFO_OPEN_FOR_READ);

 if (status != NWDS_SUCCESSFUL) {

 printf ("main failed to open %s\n", q1);

 exit(-1);

 }

 status = fifo_open (q2, &queue_out_1, FIFO_OPEN_FOR_WRITE);

 if (status != NWDS_SUCCESSFUL) {

 printf ("main failed to open %s\n", q2);

 exit(-1);

 }

 status = fifo_open (q3, &queue_out_2, FIFO_OPEN_FOR_WRITE);

 if (status != NWDS_SUCCESSFUL) {

 printf ("main failed to open %s\n", q3);

 exit(-1);

 }

}

NWDS_ERRNO fifo_write (NWDS_HANDLE handle)

{

NWDS_ERRNO status;

NetWeave Programmer’s Guide Version 2.0

January 2008 54

 status = nwds_file_write (handle, message_size, fifo_message,

 NULL, NULL);

 if (status != NWDS_SUCCESSFUL) {

 (void)nwds_error_text(status, buffer);

 printf("%s\n", buffer);

 }

 return status;

}

NWDS_ERRNO fifo_read (NWDS_HANDLE handle)

{

NWDS_ERRNO status;

NWDS_MILLISECONDS wait_time = 60000; /* 1 minute */

 memset(fifo_message, 0, max_message_size);

 for (;;) {

 status = nwds_file_read (handle, max_message_size,

 fifo_message, &message_size, NULL,

 NULL, NULL);

 if (status != NWDS_SUCCESSFUL &&

 status != NWDS_EOF) {

 (void)nwds_error_text(status, buffer);

 printf("%s\n", buffer);

 return status;

 }

 if (status == NWDS_SUCCESSFUL)

 return status;

 (void) nwds_sleep(wait_time, NULL, NULL);

 }

}

/**

* application logic goes here:

* return TRUE if you want the message to go to queue_out_1

* return FALSE if you want the message to go to queue_out_2

**/

int which_one(void)

{

 return TRUE;

}

void close_all_queues (void)

{

NetWeave Programmer’s Guide Version 2.0

January 2008 55

NWDS_ERRNO status;

 status = nwds_file_close (queue_in, NULL, NULL);

 if (status != NWDS_SUCCESSFUL) {

 (void)nwds_error_text(status, buffer);

 printf("Queue_IN: %s\n", buffer);

 }

 status = nwds_file_close (queue_out_1, NULL, NULL);

 if (status != NWDS_SUCCESSFUL) {

 (void)nwds_error_text(status, buffer);

 printf("Queue_Out_1: %s\n", buffer);

 }

 status = nwds_file_close (queue_out_2, NULL, NULL);

 if (status != NWDS_SUCCESSFUL) {

 (void)nwds_error_text(status, buffer);

 printf("Queue_Out_2: %s\n", buffer);

 }

}

int main (void)

{

NWDS_ERRNO status;

 status = nwds_init(ini_file, ini_group);

 if (status != NWDS_SUCCESSFUL){

 (void)nwds_error_text(status, buffer);

 printf("nwds_init failed: %s\n", buffer);

 exit(-1);

 }

 open_all_queues();

 for (;;) {

 if(NWDS_SUCCESSFUL != fifo_read (queue_in))

 break;

 if(which_one){

 if(NWDS_SUCCESSFUL != fifo_write (queue_out_1))

 break;

 } else {

 if(NWDS_SUCCESSFUL != fifo_write (queue_out_2))

 break;

 }

 }

 close_all_queues();

 (void)nwds_exit();

 exit(0);

} /* main */

NetWeave Programmer’s Guide Version 2.0

January 2008 56

Programming Tips: Asynchronous Calls

A NetWeave call is asynchronous if it uses a callback structure. An asynchronous call consists of two
parts:

• An initiating call, which passes the application's request and parameters to an asynchronous
service. When the initiating call returns, the programmer knows only that the called function
has started properly.

• An event, such as the receipt of a message from another process. This event causes NetWeave
to call your callback procedure. Thus, the callback function completes sometime during or
after the initiating function call has completed.

Context

Context is all the information required to continue the logical thread of a process. Because context is what
ties together the two parts of the asynchronous call, the context information must be provided in a form
that will survive from the completion of the initiating procedure to the calling of the callback procedure.
To ensure the integrity of the context information, do one of the following:

• Malloc a structure from the heap and populate it before the initiating call (the preferred
method).

• Keep the information in static global variables.

The netweave.h file includes the following typedefs:

typedef void (NWDS_CALL_BACK_PROC) (NWDS_CONTEXT, NWDS_ERRNO);

typedef struct {

 NWDS_CONTEXT context;

 NWDS_CALL_BACK_PROC *procedure;

} NWDS_CALL_BACK;

A callback structure consists of two parts:

• A pointer to context (a single pointer to the information that holds the logic of your call
together). This pointer should point to a structure malloced from the heap.

• A function pointer of type NWDS_CALL_BACK_PROC.

You pass context to NetWeave using the callback structure, and NetWeave passes the context back to
you as the first parameter of the callback function.

NetWeave Programmer’s Guide Version 2.0

January 2008 57

Waiting for Events to Happen

Nwds_sleep is one of the most powerful and complex functions within the NetWeave API. This
function allows event-driven asynchronous applications to wait in a variety of ways for new events to
occur, and/or allows the application to wake up at specified intervals to determine whether processing is
proceeding as it should. For more information about using the sleep functions to wait for events, see
page 16.

Associating Events with Callbacks

A program design is called event-driven when certain events initiate and then determine the flow of the
program. NetWeave can use either of the following to associate events and callbacks:

• The API’s callback parameter

• Platform-specific (kernel) functions

Each NetWeave function represents a NetWeave event, usually either the delivery of a message, or a
service such as a database update. In an asynchronous program, several events may be occurring
simultaneously. By pointing to the callback structure when you make a call, you associate the event that
the call causes with your callback procedure. When an event finishes, NetWeave passes your original
context and the completion status to your callback procedure, and you continue processing.

Sometimes you may want to wait not only on NetWeave events, but also on external events about which
NetWeave knows nothing – typically, asynchronous events such as keyboard or mouse inputs. These
types of external events affect only the client applications that interact with human users. But
asynchronous operations such as database updates, I/O calls to other devices, or status events from the
operating system can occur in the server environment as well.

To register these types of external events with the NetWeave kernel, use the platform-specific function

nwds_<platform_id>_define_event. To remove events from NetWeave’s kernel, use the

analogous function nwds_<platform_id>_clear_event. Removing an event means that
NetWeave will no longer wait for that event.

The following platforms have specific functions for defining events and their associated actions:

• Tandem

• Unix

• DEC/VMS/OpenVMS

• IBM MVS/CICS

NetWeave Programmer’s Guide Version 2.0

January 2008 58

TANDEM

On the Tandem, you can associate an event with a callback either once (the default) or permanently.
Because the syntax of the Tandem kernel callback procedure matches the parameters of the Guardian

OS function awaitiox, NetWeave can transfer control directly from the completion of awaitiox to
a user’s procedure without loss of information.

NetWeave for Tandem also has a mechanism for notifying the application about certain system events.

The function define_system_event associates a kernel callback procedure with receipt of a
particular system message (the event), usually a system open or close message.

#define NWDS_PERMANENT 0x0010

#define NWDS_NOT_PERMANENT 0x0000

typedef void (NWDS_KERNEL_CALL_BACK_PROC) (short,

 void *,

 short,

 short,

 long,

 void *);

typedef struct {

 NWDS_CONTEXT user_context;

 NWDS_KERNEL_CALL_BACK_PROC *procedure;

} NWDS_KERNEL_CALL_BACK;

extern __CPP NWDS_ERRNO NWDS_TANDEM_DEFINE_EVENT (

short filenumber,

 long tag,

 long timeout,

 short permanent,

 NWDS_ITEM_LIST *item_list,

 NWDS_KERNEL_CALL_BACK *call_back);

extern __CPP NWDS_ERRNO NWDS_TANDEM_DEFINE_SYSTEM_EVENT (

 short system_message_number,

 short permanent,

 NWDS_ITEM_LIST *item_list,

 NWDS_KERNEL_RECV_CALL_BACK *call_back);

extern __CPP NWDS_ERRNO NWDS_TANDEM_CLEAR_EVENTS (short filenumber,

 long tag,

 short error

);

extern __CPP NWDS_ERRNO NWDS_TANDEM_CLEAR_SYSTEM_EVENTS (short

system_number,

 NWDS_KERNEL_RECV_CALL_BACK *call_back);

NetWeave Programmer’s Guide Version 2.0

January 2008 59

UNIX

For UNIX operating systems, NetWeave associates a callback function with a file handle such as a raw
socket. This allows the application to integrate NetWeave with private mechanisms that use
asynchronous events on file handles to indicate when to return control to the application. Because
NetWeave avoids using signals, an application may use signals to return control from asynchronous
events without interfering with NetWeave's operation.

typedef short (NWDS_UX_KERNEL_CALL_BACK_PROC) (NWDS_CONTEXT, IO_TYPE);

typedef struct {

 NWDS_CONTEXT context;

 NWDS_UX_KERNEL_CALL_BACK_PROC *procedure;

} NWDS_UX_KERNEL_CALL_BACK;

extern __CPP NWDS_ERRNO nwds_ux_clear_event(

 int socket_descr,

 int read_mask,

 int write_mask);

extern __CPP NWDS_ERRNO nwds_ux_define_event(

 int socket_descr,

 int permanent,

 NWDS_UX_KERNEL_CALL_BACK *read_completion,

 NWDS_UX_KERNEL_CALL_BACK *write_completion);

Digital Equipment Corp., VMS and OpenVMS

On DEC Alpha and VAX/VMS platforms, NetWeave lets you associate a callback with a VMS event
flag. An event flag can be either clear or set (the event is assumed to have occurred). NetWeave waits
only for local event flags in the range 32 to 63.

NWDS_ERRNO nwds_vms_define_event (int efn, NWDS_CALL_BACK *completion);

NWDS_ERRNO nwds_vms_clear_event (int efn);

Microsoft Windows NT, Windows Millennium

On Windows platforms, NetWeave let you associate a callback with a Win32 handle such as a raw

socket descriptor. NetWeave uses the Windows function waitForMultipleObjects to coordinate
asynchronous operations.

extern __CPP NWDS_ERRNO nwds_nt_clear_event (long hEvent);

extern __CPP NWDS_ERRNO nwds_nt_define_event (

 long hEvent,

 NWDS_CALL_BACK *completion);

NetWeave Programmer’s Guide Version 2.0

January 2008 60

Asynchronous Server: Case Study

This example shows the implementation of a simple server program using NetWeave API functions in
asynchronous mode. On the Tandem platform, this file is known as aserverc. All other platforms refer to
it as aserver.c. You can find this and other useful sample programs discussed in this document at
ftp://www.vertexinteractive.com/middleware/code/CodeExamples.zip.

The aserver program is implemented using callbacks (i.e., it is asynchronous), and it is somewhat
limited because it can processes only one connection at a time. To enable aserver to handle multiple

concurrent sessions, unique MESSAGE_CONTEXT structures have to be allocated from dynamic
memory instead of the single static data structure in effect now. Because aserver uses only NetWeave
functions to associate events with callbacks, events in this program are NetWeave events, as opposed to
being external O/S-specific events described in previous sections. The events describe a cascade of
actions that form a connection to a remote client, and then wait for messages from the client.

There are two callback structures associated with each of the three calls (nwds_ipc_publish,

nwds_ipc_accept, and nwds_ipc_connect) required to set up a new call. Each NetWeave

function has a completion callback, while a few functions (notably nwds_ipc_publish and

nwds_ipc_accept) have both completion and notification callbacks.

The completion callback is similar to that used in other NetWeave functions. NetWeave calls this when
the event associated with the function has completed. Thus, after NetWeave creates the public name in
the communications network, the completion callback reports that the server program is ready to receive
calls.

The notification callback is crucial for effective IPC messaging. For nwds_ipc_publish, the

notification callback is called when NetWeave detects a new call. For nwds_ipc_accept and

nwds_ipc_connect, the notification callback is called when the aserver application receives a new
message.

Road Map for ASERVER

This section describes each aserver section, beginning with main(). Like most asynchronous

programs, aserver performs its initialization steps and then calls nwds_sleep(), which allows all
subsequent processing to occur in the series of callback procedures that were set up during initialization.

1. The main routine calls start_publish and then waits for events to occur by calling

nwds_sleep(). All subsequent events flow from start_publish.

2. Start_publish calls nwds_ipc_publish using a completion callback and a notification

callback called connect_received. This callback will be called when the program

connecting to aserver issues nwds_ipc_connect to establish a connection with the
corresponding NetWeave connection group.

3. During the final call setup step, connect_received calls nwds_ipc_accept using
both a completion callback and a notification callback. The status that is returned to

connect_received indicates whether the call setup was concluded successfully. When

data is available for nwds_ipc_read() to read, the notification callback

process_request() is called.

4. Whenever aserver receives a new message from the client, the NetWeave kernel notifies

process_request. Within process_request, a call to nwds_ipc_options returns (among

NetWeave Programmer’s Guide Version 2.0

January 2008 61

other things) the size of the incoming message and the sender. The nwds_ipc_options call
is synchronous because data is already available to return to the program. The same is true for

the next call, nwds_ipc_read(), which dequeues the message from one of NetWeave’s
internal queues.

5. If the destination application has already read the message, a write completion (in an

asynchronous program, this means when the NetWeave kernel calls the write_callback) is

returned.

NOTE: The aserver code is reproduced in its entirety. Additional editorial comments appear in
bold text.

/***

*

* This server is asynchronous. It receives a message, processes it

* and writes the reply to the originator.

*

* This example uses the following NWDS functions:

* nwds_init

* nwds_publish

* nwds_accept

* nwds_ipc_write

* nwds_ipc_read

* nwds_ipc_shutdown

* nwds_exit

* nwds_error_text

*

***/

#include "netweave.h"

#define MAX_MSG_SIZE 10000

#define INITIAL 10

#define WAITING_FOR_REQUEST 11

#define PROCESSING_REQUEST 12

#define REQUEST_PROCESSED 13

typedef struct {

 short state;

 char *buffer;

 NWDS_HANDLE publish_handle;

 NWDS_HANDLE accept_handle;

} MESSAGE_CONTEXT; the “context” that links together the initial

 phase of a call and its completion phase

void accept_complete (NWDS_CONTEXT context, NWDS_ERRNO error);

void connect_received (NWDS_CONTEXT context, NWDS_ERRNO error);

NetWeave Programmer’s Guide Version 2.0

January 2008 62

void publish_complete (NWDS_CONTEXT context, NWDS_ERRNO error);

void start_publish (char *publish_name, MESSAGE_CONTEXT *msg_context);

void client_write_complete (NWDS_CONTEXT context, NWDS_ERRNO error);

void process_request (NWDS_CONTEXT context, NWDS_ERRNO error);

void shutdown_gracefully (MESSAGE_CONTEXT *);

int main (int argc, char *argv[])

{

 NWDS_ERRNO status;

 char ini_file[MAX_STRING];

 char ini_group[MAX_STRING];

 char server_name[MAX_STRING];

 char publish_name[MAX_STRING];

 int error;

 MESSAGE_CONTEXT *msg_context;

 if (argc < 4) {

 printf("Error:: Improper parameters passed at runtime\n");

 printf("Syntax:: SERVER <ini_file> <group_name> <publish_name>\n");

 exit(0);

 }

 strcpy(ini_file, argv[1]);

 strcpy(ini_group, argv[2]);

 strcpy(publish_name, argv[3]);

 printf("%s initializing\n", ini_group);

 msg_context = (MESSAGE_CONTEXT *)malloc(sizeof(MESSAGE_CONTEXT));

 if (msg_context == NULL) {

 printf("Server unable to malloc MESSAGE_CONTEXT");

 return TRUE;

 }

 msg_context->buffer = malloc(MAX_MSG_SIZE);

 if (msg_context->buffer == NULL) {

 printf("Server unable to malloc MESSAGE_CONTEXT->BUFFER");

 return TRUE;

 }

 msg_context->publish_handle = NULL;

 msg_context->accept_handle = NULL;

 msg_context->state = INITIAL;

 /***

NetWeave Programmer’s Guide Version 2.0

January 2008 63

 *

 * We first initialize the NetWeave library

 *

 ***/

 if (NWDS_SUCCESSFUL != nwds_init(ini_file, ini_group)) {

 printf("Server init failed with <ini_file>,<ini_group> (%s,%s)\n",

ini_file, ini_group);

 exit(0);

 }

 printf("Server Issuing NWDS_IPC_PUBLISH for %s\n", ini_group);

 start_publish(publish_name, msg_context); everything starts here

 nwds_sleep(0xFFFFFF, NULL, NULL); sleep a very long time

}

 accept_complete marks the end of the call setup phase

 it changes the context’s “state” to WAITING_FOR_REQUEST

void accept_complete (NWDS_CONTEXT context, NWDS_ERRNO error)

{

 MESSAGE_CONTEXT *msg_context = (MESSAGE_CONTEXT *)context;

 if (error != NWDS_SUCCESSFUL) {

 printf("FATAL Server: NWDS_IPC_ACCEPT error, returned error (%d)\n",

error);

 shutdown_gracefully(msg_context);

 return;

 }

 msg_context->state = WAITING_FOR_REQUEST;

}

void connect_received (NWDS_CONTEXT context, NWDS_ERRNO error)

{

 NWDS_ERRNO status;

 NWDS_ITEM_LIST ilist[1];

 NWDS_CALL_BACK completion_callback;

 NWDS_CALL_BACK data_received_callback;

 MESSAGE_CONTEXT *msg_context = (MESSAGE_CONTEXT *)context;

 if (error != NWDS_SUCCESSFUL) {

 printf("FATAL Server: Error (%d) on publish handle\n", error);

 shutdown_gracefully(msg_context);

 return;

NetWeave Programmer’s Guide Version 2.0

January 2008 64

 }

 /***

 *

 * We now wait for someone to connect to us

 *

 ***/

 ilist[0].type = NWDS_END_OF_LIST;

 completion_callback.context = msg_context;

 completion_callback.procedure = accept_complete;

 data_received_callback.context = msg_context; notification callback

 data_received_callback.procedure = process_request;

 printf("Server Issuing NWDS_IPC_ACCEPT\n");

 status = nwds_ipc_accept(msg_context->publish_handle,

 &msg_context->accept_handle,

 ilist,

 &completion_callback,

 &data_received_callback);

 if ((status != NWDS_SUCCESSFUL) && (status != NWDS_PENDING)) {

 printf("FATAL Server: NWDS_IPC_ACCEPT error, returned status (%d)\n",

status);

 shutdown_gracefully(msg_context);

 return;

 }

 printf("Server NWDS_IPC_ACCEPT issued successfully\n");

}

void publish_complete (NWDS_CONTEXT context, NWDS_ERRNO error)

{

 MESSAGE_CONTEXT *msg_context = (MESSAGE_CONTEXT *)context;

 if (error != NWDS_SUCCESSFUL) {

 printf("FATAL Server: NWDS_IPC_ACCEPT error, returned error (%d)\n",

error);

 shutdown_gracefully(msg_context);

 return;

 }

}

void start_publish (char *publish_name, MESSAGE_CONTEXT *msg_context)

{

 NWDS_ERRNO status;

 NWDS_ITEM_LIST ilist[1];

 NWDS_CALL_BACK completion_callback;

 NWDS_CALL_BACK call_received_callback;

NetWeave Programmer’s Guide Version 2.0

January 2008 65

 /***

 *

 * We publish so that requests can be received

 *

 ***/

 ilist[0].type = NWDS_END_OF_LIST;

 completion_callback.context = msg_context;

 completion_callback.procedure = publish_complete;

 call_received_callback.context = msg_context; notification callback

 call_received_callback.procedure = connect_received;defined here

 status = nwds_ipc_publish(publish_name,

 &msg_context->publish_handle,

 ilist,

 &completion_callback, completion CB

 &call_received_callback); notification CB

 if ((status != NWDS_SUCCESSFUL) && (status != NWDS_PENDING)) {

 printf("Server NWDS_IPC_PUBLISH error, returned status (%d)\n", status);

 shutdown_gracefully(msg_context);

 return;

 }

 printf("Server NWDS_IPC_PUBLISH issued successfully\n");

}

void client_write_complete (NWDS_CONTEXT context, NWDS_ERRNO error)

{

 MESSAGE_CONTEXT *msg_context = (MESSAGE_CONTEXT *)context;

 if (error != NWDS_SUCCESSFUL) {

 printf("Server NWDS_IPC_WRITE to client error, returned error (%d)\n",

error);

 }

 msg_context->state = WAITING_FOR_REQUEST;

}

void process_request (NWDS_CONTEXT context, NWDS_ERRNO error)

{

 NWDS_ERRNO status;

 NWDS_ITEM_LIST ilist[4];

 char request[MAX_STRING];

 NWDS_SIZE return_size;

NetWeave Programmer’s Guide Version 2.0

January 2008 66

 long queue_count; for ipc_options

 long message_size;

 char address[MAX_STRING];

 NWDS_CALL_BACK completion_callback;

 MESSAGE_CONTEXT *msg_context = (MESSAGE_CONTEXT *)context;

 if (error != NWDS_SUCCESSFUL) {

 if (error == NWDS_LINK_DOWN) {

 printf("Server Client shutdown connection - awaiting new

connection\n");

 } else {

 printf("Server NWDS_IPC_READ on accept_handle error, returned status

(%d)\n", status);

 }

 status = nwds_ipc_shutdown(msg_context->accept_handle,

 NULL,

 NULL);

 if (status != NWDS_SUCCESSFUL) {

 printf("FATAL Server: NWDS_IPC_SHUTDOWN on accept_handle failed,

returned status (%d)\n",

 status);

 shutdown_gracefully(msg_context);

 return;

 }

 msg_context->accept_handle = NULL;

 return;

 }

 /***

 *

 * Call NWDS_IPC_OPTIONS to retrieve info

 *

 ***/

 status = nwds_item_load_long(ilist,

 0,

 NWDS_IPC_QUEUE_COUNT,

 &queue_count);

 if (status != NWDS_SUCCESSFUL) {

 shutdown_gracefully(msg_context);

 return;

 }

 status = nwds_item_load_long(ilist,

 1,

 NWDS_IPC_MESSAGE_SIZE,

 &message_size);

 if (status != NWDS_SUCCESSFUL) {

NetWeave Programmer’s Guide Version 2.0

January 2008 67

 shutdown_gracefully(msg_context);

 return;

 }

 status = nwds_item_load_char(ilist,

 2,

 NWDS_IPC_ADDRESS,

 MAX_STRING,

 address);

 if (status != NWDS_SUCCESSFUL) {

 shutdown_gracefully(msg_context);

 return;

 }

 ilist[3].type = NWDS_END_OF_LIST;

 status = nwds_ipc_options(msg_context->accept_handle,

 ilist);

 printf("Message from Client\n");

 printf(" QUEUE_COUNT = %ld\n", queue_count);

 printf(" MESSAGE_SIZE = %ld\n", message_size);

 printf(" ADDRESS = %s\n", address);

 /***

 *

 * We read the request from the client

 *

 ***/

 ilist[0].type = NWDS_END_OF_LIST;

 status = nwds_ipc_read(msg_context->accept_handle,

 MAX_MSG_SIZE,

 msg_context->buffer,

 &return_size,

 ilist);

 if (status != NWDS_SUCCESSFUL) {

 printf("Server NWDS_IPC_READ on accept_handle error, returned status

(%d)\n", status);

 shutdown_gracefully(msg_context);

 return;

 } else {

 printf("\nServer - Request of %d bytes\n", return_size);

 msg_context->state = PROCESSING_REQUEST;

NetWeave Programmer’s Guide Version 2.0

January 2008 68

 /***

 * The call to the procedure to process the request goes here

 ***/

 ilist[0].type = NWDS_END_OF_LIST;

 completion_callback.context = msg_context;

 completion_callback.procedure = client_write_complete;

 status = nwds_ipc_write(msg_context->accept_handle,

 return_size,

 msg_context->buffer,

 ilist,

 &completion_callback);

 if (status != NWDS_SUCCESSFUL) {

 printf("FATAL Server: NWDS_IPC_WRITE on accept_handle error, returned

status (%d)\n", status);

 shutdown_gracefully(msg_context);

 return;

 }

 msg_context->state = REQUEST_PROCESSED;

 printf("Server write successful\n");

 }

}

void shutdown_gracefully (MESSAGE_CONTEXT *msg_context)

{

 NWDS_ERRNO status;

 NWDS_ITEM_LIST ilist[1];

 if (msg_context == NULL) {

 nwds_exit();

 exit(0);

 }

 ilist[0].type = NWDS_END_OF_LIST;

 if (msg_context->publish_handle != NULL) {

NetWeave Programmer’s Guide Version 2.0

January 2008 69

 status = nwds_ipc_shutdown(msg_context->publish_handle,

 ilist,

 NULL);

 }

 if (msg_context->accept_handle != NULL) {

 status = nwds_ipc_shutdown(msg_context->accept_handle,

 ilist,

 NULL);

 }

 if (msg_context->buffer != NULL) {

 free(msg_context->buffer);

 }

 free(msg_context);

 nwds_exit();

 exit(0);

}

NetWeave Programmer’s Guide Version 2.0

January 2008 70

Prototyping with Synchronous Calls

Objectives of a prototype:

• Demonstrate one call to each of the NetWeave functions you want to use.

• Confirm that you understand which item types and values are required.

• Test your INI file.

Always start with a simple, synchronous prototype of each new application. NetWeave functions are
intended to simplify programming. If your prototype takes more than a day or two to construct, it is too
complicated. Simplify and start over.

Mixing Synchronous and Asynchronous Calls

As a rule, the way you define a handle also indicates how you expect NetWeave to use it. For example,
if you build a server that performs call setup synchronously, the underlying communications

infrastructure expects that your messages will be read by blocking calls to nwds_ipc_read. The
same is true for file operations. If your call to open a FIFO is synchronous, subsequent reads or writes of
the FIFO should be synchronous too.

Because it is so tedious to write asynchronous code, you may be tempted to take shortcuts by calling
some of the NetWeave functions synchronously. Although this may work for simple, low volume
situations, once applications are ramped up to production volumes, you may start to notice some
performance oddities. If you are serious about writing asynchronous applications, be thorough!

Calls with Timeouts

There is no direct support for timeouts on individual function calls. Whereas in a closed, proprietary
environment you can limit the consequences of a timeout, usually the only thing you can do in an open,
distributed environment is close a remote file or shut down a conversation. Recovery of either of these
can be expensive.

Lack of timeout protection can lead to situations where a synchronous client application may have to
wait an unacceptably long time for a response. To avoid this, use either of the following strategies for
your synchronous program:

• If your platform supports timers, use system routines to cause a timer event, and define this
event and callback to NetWeave.

• Use nwds_sleep to poll for the completion of an event.

A timer is a system-specific external function that will cause a particular event (timer interrupt) in your
program. You can use a system routine to define a timer, and then use the NetWeave kernel calls to
define this timer event to NetWeave. For data server operations that time out, the callback associated
with the timer must close the remote file. If a timeout occurs during IPC messaging, the callback must
shut down the circuit.

NOTE: If you have started a system timer and the event for which you are waiting occurs,
remember to stop the timer (if your system supports this), and remove the event from the list that
NetWeave monitors.

NetWeave Programmer’s Guide Version 2.0

January 2008 71

To poll for a completion means to monitor a flag that the completion function sets up when an

asynchronous NetWeave function finishes. Nwds_sleep is called repeatedly until the flag is set or the

timeout interval expires – usually a small number of poll cycles. If the call times out, the program may
continue to operate and ignore the eventual completion, or it may force a shutdown to stop the server
from further processing.

Tips on Testing NetWeave Applications

For messaging applications, unit test locally. Most applications (except data server) should be
constructed to run on a single platform. For example, if you are doing IPC messaging, construct a
simple client or server to interact with your application. Such a test bed is said to run in loopback mode.

Don’t skimp on error routines. Test the return code of every NetWeave function, and if it returns

NWDS_NOT_SUCCESSFUL or NWDS_PENDING, call nwds_error_text to interpret the error.

When you get unexpected results, remember to check the NetWeave log for errors. NetWeave’s trace
feature can log and print the values of many of the parameters passed in NetWeave calls. If you can
duplicate a problem using a short sequence of code, try running the short program with full traces.

NetWeave Programmer’s Guide Version 2.0

January 2008 72

Threaded Dispatcher dp_pong: Case Study

Calling the nwds_dispatcher_create function starts a threaded Dispatcher. This function call
starts the controlling thread called the boss thread, whose primary function is to detect any incoming
external calls. The boss thread also starts additional service threads, called worker threads, which house

the function that the application supplied to nwds_create_dispatcher().

When a boss thread is started, it publishes the internal and external connection group names that were
provided as parameters in the API. It then waits for an incoming call on the external name. When an
external connection is established, the boss thread starts a worker thread, which in turn connects to the
internal publish name. Once this connection is established, the boss thread links the external and internal
connections into a single virtual connection.

The worker thread is a user-provided function that must satisfy the following requirements:

• Nwds_init must be the first NetWeave API function called in the worker thread. It should
be passed NULL for both the INI file and INI group parameter. These are process-wide
parameters that the main application supplied before it called

nwds_create_dispatcher().

• All NetWeave calls within the worker_thread function should be synchronous.

• The worker thread must issue a nwds_ipc_connect call in a timely manner. The boss

thread has its own internal timer that it starts when it creates a worker thread. If the worker
thread doesn’t connect before this timer expires, the boss thread considers the connection stale
and disconnects it.

• Once connected, the worker thread must issue a nwds_ipc_read call and wait to receive a

message before it can do anything else.

• If a worker thread detects a broken connection or is finished processing, it must issue a

nwds_ipc_shutdown call and promptly exit, or simply return from the function call.

• Before exiting, the worker thread must issue the nwds_exit call.

A Dispatcher Example

In the example below, the main processing is relatively short. Nwds_init is followed by the

nwds_dispatcher_create call, which provides the external, internal, and control publish names.

(These names must be defined in the INI file that is passed as a parameter to the nwds_init API

function.) When nwds_dispatcher_create returns to the caller, the example program enters a
loop and spends the next hour gathering statistics from the boss thread. When the program completes
this cycle of reporting statistics, it stops the Dispatcher and terminates the program.

NOTE: You can find the sample program dp_pong, as well as the others mentioned in this
document, at ftp://www.vertexinteractive.com/middleware/code/CodeExamples.zip. On the

Tandem platform, dp_pong is known as dppongc. All other platforms refer to it as

dp_pong.c.

NetWeave Programmer’s Guide Version 2.0

January 2008 73

#include "netweave.h"

/* The main processing routine has two parameters, the INI file and the

Start Group. */

int main(int argc,char *argv[])

{

NWDS_ERRNO retstat;

NWDS_HANDLE DHandle;

NWDS_ITEM_LIST items[2];

NWDS_APPLTHREAD_PROC worker_thread;

char *ext_pub_nam = "EXTERNAL";

char *int_pub_nam = "INTERNAL";

char *ctrl_pub_nam = "CONTROL";

int i, num_thrds = 0, num_msgs = 0;

/* Initialize NetWeave */

retstat = nwds_init(argv[1],argv[2]);

if (retstat != NWDS_SUCCESSFUL)

err_exit("Error doing init",retstat);

/* In this example only the int_pub_nam is passed to the worker thread. In

a typical application other information must also be provided to the worker.

*/

retstat = nwds_dispatcher_create(ext_pub_nam,

int_pub_nam,

ctrl_pub_nam,

int_pub_nam, /* Information for the worker */

&DHandle,

worker_thread);

if (retstat != NWDS_SUCCESSFUL)

err_exit("Error doing create_dispatcher",retstat);

items[0].type = NWDS_KERNEL_SUSPEND;

items[1].type = NWDS_END_OF_LIST;

for (i = 1; i <= 3600; i++)

{

 retstat = nwds_sleep(1, items, NULL);

 nwds_dispatcher_stats(DHandle, &num_thrds, &num_msgs);

printf(“Threads = %d, Messages = %d\n”, num_thrds, num_msgs);

 }

NetWeave Programmer’s Guide Version 2.0

January 2008 74

nwds_dispatcher_stop(DHandle);

return 0;

}

/* end of main */

Nwds_init is the first NetWeave function called in the worker thread. Each of its parameters must be

NULL. Next, nwds_ipc_connect is called to form the internal connection to the boss thread. After
the worker thread is connected, it repeatedly receives a request message, processes it, and returns a
response. This cycle continues until the external client disconnects.

NOTE: When the dialogue is complete, nwds_exit is the final NetWeave API function called.

Nwds_exit is also called before the application exits because of an error.

/* worker thread processing routine */

void worker_thread(void *anypointer)

{

char *int_pub_nam = (char*)anypointer;

NWDS_ERRNO retstat;

NWDS_HANDLE IPCHandle = (NWDS_HANDLE)0;

NWDS_SIZE Retlen;

int j;

char MsgBuffer[MAX_SIZE];

char *SampleReply = {"Here is some text...."};

/* params can be NULL after 1st call to nwds_init in main() */

retstat = nwds_init(NULL, NULL);

if(retstat != NWDS_SUCCESSFUL) return;

printf("new thread started...\n");

/* make connection with boss thread */

nwds_ipc_connect(int_pub_nam, &IPCHandle, NULL, NULL, NULL);

if(retstat != NWDS_SUCCESSFUL)

thrd_err_exit("failed connect",retstat);

printf("Connected...\n");

for (;;) {

 /* wait for message */

retstat = nwds_ipc_read(IPCHandle, sizeof(MsgBuffer), MsgBuffer ,&Retlen,

NULL);

if (retstat != NWDS_SUCCESSFUL) {

/* other side shutdown, go out of loop */

if (retstat == NWDS_LINK_DOWN)

break;

else

thrd_err_exit("failed to read request: ",retstat);

}

NetWeave Programmer’s Guide Version 2.0

January 2008 75

/* process the request from the remote client application */

/* prepare response message */

strcpy(MsgBuffer, , SampleReply, sizeof(SampleReply));

retstat = nwds_ipc_write(IPCHandle, MsgBuffer, sizeof(SampleReply) ,NULL,

NULL);

if (retstat != NWDS_SUCCESSFUL) {

/* other side shutdown, go out of loop */

if (retstat == NWDS_LINK_DOWN)

break;

else

thrd_err_exit("failed to write reply: ",retstat);

}

} /* end worker's processing loop */

/* disconnect gracefully */

retstat = nwds_ipc_shutdown(IPCHandle, NULL, NULL);

if(retstat != NWDS_SUCCESSFUL)

 thrd_err_exit("trouble shutting down IPC Handle",retstat);

}

printf(" thread leaving....\n");

nwds_exit();

}

/* error processing routines */

void err_exit(char * text, NWDS_ERRNO errnum)

{

printf("%s : %d\n",text, errnum);

nwds_exit();

}

void thrd_err_exit(char * text, NWDS_ERRNO errnum)

{

printf("%s : %d\n",text, errnum);

nwds_exit();

}

NetWeave Programmer’s Guide Version 2.0

January 2008 76

The Windows Versions of the NetWeave DLL

There are two versions of NetWeave for the Win9x/NT/2000 platforms. Both versions are intended for
32-bit operating systems.

W95

NetWeave W95 is the version of NetWeave for Windows 95/98 that uses the Microsoft Winsock 1.1
library. Existing NetWeave programs for Win9x platforms will work with NetWeave W95, which may
be used with any of the Win9x/NT/2000 platforms subject to the conditions described below.

W95 is used for client-side GUI applications based on the traditional Windows Messaging architecture.
W95 uses the Winsock 1.1 DLL for TCP/IP sockets. All inputs to an application built with the W95
version must be received via the Windows Message queue. The principal timing function is SetTime,
and all timing operations are controlled by messages sent to the Windows Message queue.

NT/2000

NetWeave WinNT/2000 is based on the Windows NT/2000 kernel, and exploits some of the powers
unique to the Windows/NT operating system. The NT version is used for multi-threaded, server-side
applications. You can use it to build GUI applications as long as you don’t use a thread for both the GUI
and for NetWeave functions.

The NT version of NetWeave is “thread-safe” and works best with an event-driven programming model.
The NT version uses the enhanced interface to sockets, Winsock 2.0, that is compatible with the event-
driven models. All inputs to a NetWeave thread are controlled by calls to

WaitForMultipleObjects, which has a hard limit of 64 concurrent objects. Timers are

implemented by a special set of events initiated by SetWaitableTimer.

Contents of the NetWeave for Windows 95 and NT Releases

In addition to the division by platform and operating system between Windows 95 and NT, each
customer’s licensing agreement determines which files the customer receives. You may purchase a
NetWeave license in three different configurations:

• Client-only license: connects applications on a workstation with applications on another
NetWeave system.

• Standard (base) server license: adds the NetWeave Agent to the client license components.

• Broadcast server license: adds support for broadcast messaging to the basic Agent.

For more information, please see the table on next page.

NetWeave Programmer’s Guide Version 2.0

January 2008 77

Version License type File Description

netweave.h NetWeave header file

nwds95.dll Win95/98 dll

nwds95i.lib Import library

nwds95s.lib Static library

Client-only

tst.exe TST test program (uses nwds95.dll)

basesrv.exe Console base server Base server

wbasesrv.exe GUI base server

bcastsrv.exe Console broadcast server

W95

Broadcast server

wcastsrv.exe GUI broadcast program

netweave.h NetWeave header file

nwdsnt.dll NT dll

nwdsnti.lib Import library

nwdsnts.lib Static library

Client only

tst.exe TST test program (uses nwdsnt.dll)

basesrv.exe NetWeave Agent as a console program Base server

basesvc.exe NetWeave Agent as NT service

bcastsrv.exe Console broadcast server

NT

Broadcast server

bcastsvc.exe Broadcast program as NT service

NetWeave Programmer’s Guide Version 2.0

January 2008 78

Sample NetWeave Programs

This section describes the sample programs available on the NetWeave ftp site. The text or zip files on
the site are organized by hardware platform, language, and NetWeave service (IPC messages, queued
messages, local database, etc.). The program archive is constantly expanding as more examples are
added for the vast range of applications possible with the NetWeave API for all the major hardware
vendors. To see what’s new in the sample program archive, please visit the NetWeave website
ftp.netweave.com/middleware.

All files permanently located on the ftp site are compressed using the PKZIP utility from PKWARE,
Inc. If needed, you can make special arrangements to obtain software examples that are uncompressed,
or compressed using another common utility (such as uuencode for UNIX).

In this section, the term make file refers generically to the procedures for compiling and linking modules
into runnable programs (executables). For each hardware vendor, you will find examples of the
commands you need on that platform to compile and link the sample programs.

Accessing the NetWeave ftp Site

Because ftp is a TCP/IP utility, you must have a computer with an Internet connection to access and
retrieve the files on the ftp site.

From an FTP Client program:

1. Attach to ftp.netweave.com and log on as anonymous.

2. For the password, enter your email address.

3. Select a file transfer mode: binary for zip files, ascii for text files.

4. Change the directory to middleware/code.

5. Look for the file SampleCodeArchive.zip.

6. Using a Web browser, download the following file:
http://www.vertexinteractive.com/middleware/SampleCodeArchive.zip

NOTE: To find the sample files that you need, check the location list for the hardware platform
and language that you are using. If there are no examples in a particular language for the
platform you are using, check the other platforms for samples in this language.

NetWeave Programmer’s Guide Version 2.0

January 2008 79

Code Samples

General Purpose Examples

These programs demonstrate many basic concepts in a variety of programming languages:

Program Language Description

ACLIENTC C An asynchronous program that can communicate with either
ASERVERC or SSERVERC.

ASERVERC C An asynchronous server program. It is one of the examples on
page 60.

SCLIENTC C A synchronous program that can communicate with either
ASERVERC or SERVERC. It is a more complex version of
XIPCCC.

SSERVERC C A synchronous server program that echoes the request
message as the reply.

TST2S COBOL85 A synchronous program that demonstrates queued messaging
services.

TSTIPCS COBOL85 This program demonstrates IPC messaging. It connects to the
server TSTSERVS, sends it a message, and waits for a reply.

TSTSERVS COBOL85 The companion to TSTIPCS.

XIPCCC C A client program that demonstrates IPC messaging and
message translation services.

XIPCSC C A server program, the companion to XIPCCC.

XPATHCC C A client program that sends a message to a Tandem Pathway
serverclass and waits for a reply.

XPATHSC C A companion for XPATHCC.

XREADC C This program illustrates data server services and message
translation.

XWRITEC C A companion for XREADC, it writes the text records read by
XREADC.

NetWeave Programmer’s Guide Version 2.0

January 2008 80

WinNT

NTPongSamp.zip

The zip file NTpongsamp.zip contains a Microsoft Visual C++ 6.0 workspace with three projects,
which create the following executables:

Program Description

anwpong An asynchronous messaging program with both client and server
operations, which pongs messages back and forth across one or more
concurrent sessions. Anwpong demonstrates how to use asynchronous
function calls.

snwpong A synchronous version of anwpong, which supports only a single session.
Snwpong demonstrates how to use synchronous function calls.

amtpong A multi-threaded version of anwpong. Amtpong is an example of how to
use synchronous function calls with multiple threads.

These simple programs serve as both the client and server component of a ping-pong messaging
program. The two components may run either on two different machines, or on the same box in
loopback mode. They send a message buffer back and forth, each time adding two bytes to the end of
the message to represent the number of loops. Each time the client or server receives a message from its
counterpart, the array element at position 'n' is compared with the loop counter to test NetWeave’s byte
ordering component (the DDL).

By typing the program name, you can make each program return a text display of the command line

parameter list. Snwpong uses the groups PONG_CLIENT, PONG_SERVER, depending on whether you
are running a client or server. Example test groups TST1, TST2, TST3 are provided for use with the
other two executables.

The NTPongSamp.zip file contains the following components:

File Description

Testprograms.dsw Workspace file

anwpong.dsp anwpong project file

snwpong.dsp snwpong project file

amtpong.dsp amtpong project file

netweave.h Netweave API header

amtpong.h Header for amtpong.c

anwpong.h- Header for anwpong.c

anwpong.c Asynchronous version of pong program

snwpong.c Synchronous version of pong program

amtpong.c Multithreaded version of pong program

nwds.ini Sample INI file

NetWeave Programmer’s Guide Version 2.0

January 2008 81

In project settings under C/C++ in the preprocessor category you should set additional include
directories to be “..\netweave” for each project. Regardless where you unpack the zip file, make sure
you remap the paths to the source files in the workspace.

NTWindemo.zip

The NTWindemo.zip file contains a Microsoft Visual C++ 6.0 workspace with one project that

creates the executable windemo. Windemo illustrates how to write a client application in C that calls

the NetWeave API. The NTWindemo.zip file contains the following components:

File Description

windemo.dsw Workspace file

windemo.dsp Project file

itemdef.c

tables.c

w_draw.c

w_files.c

w_ipc.c

w_items.c

w_sql.c

w_tp.c

w_util.c

windemo.c

Source code files

windemo.dlg A dialog box

windemo.h Header file

windemo.rc Resource file

itemdef.h

netweave.h

Header files

nwds95i.lib Netweave library

tables.h

windraw.h

windlib.h

Header files

windemo.ico Icon file

To build this project on a local machine, do the following:

1. In project settings under C/C++ in the preprocessor category, add a path to the NetWeave

directory that contains netweave.h.

NetWeave Programmer’s Guide Version 2.0

January 2008 82

2. Under Preprocessor Definitions, define windemo to any value.

3. In the Link category, put the library netweave/nwds95i.lib under Object/Library

modules, assuming that the netweave directory is located in a subdirectory called netweave.

4. Remap the paths to the source files in the workspace (this will depend on where you unpack the
zip file).

UNIX

This directory contains a makefile (UnixSampleCode.zip) suitable for making the following
executables:

• anwpong

• snwpong

• amtpong

These files perform the same functions that we described for the WINNT platform. You can mix and
match platforms as you experiment with these sample programs. The directory contains the following
sample files:

File Description

Makefile Unix makefile for anwpong, snwpong, amtpong

amtpong.c Multithreaded version of pong program

amtpong.h Header for amtpong.c

anwpong.c Asynchronous version of pong program

anwpong.h Header for anwpong.c

netweave.h Netweave API header

snwpong.c Synchronous version of pong program

nwds.ini Sample INI file

NetWeave Programmer’s Guide Version 2.0

January 2008 83

Ibm_cics\cobol

File Description

sampcode.zip

ca.cob

camaster.cob

client.cob

netweave.cob

server.cob

sql.cob

Win31

POWERBUILDER

The NW_PB4.ZIP archive contains a sample application written for the 16-bit version of Power

Builder software, and includes examples of IPC messaging and queued messaging.

VisualBasic (vb30)

Use the sample files in VBDEMO.EXE to build a simple client application in the 16-bit Windows
environment using Visual Basic.

NetWeave Programmer’s Guide Version 2.0

January 2008 84

TANDEM

TANDEM\cfile\T1.ZIP Data server

This collection of files shows how to build and run a simple C program that reads and writes C stream
files (flat files) on any platform with a NetWeave Agent.

File Description

BINDIN Input to the Binder; called from MAKE1IN.

MAKE1IN Input to TACL; called from MAKECF1.

MAKECF1 A makefile for Tandem that compiles and binds TANCC.

NWDSINI An example that shows how to use the NetWeave API to read and write
flat files directly from the application without the Agent. Use this for
local unit testing.

NWDSINI2 A typical INI file that shows how to address an Agent to read and write
remote flat files. (This Agent happens to be the loopback Agent.)

RC1 An obey file to execute the program.

RDC1 An obey file for debugging.

TANCC The sample C program. It opens a file, writes one record, and closes it.
Then it reopens the file for reading, reads the record, and closes it
again.

TANCH TANCC’s header file.

TTE.CAP Sample output from TANCC during a successful run.

NetWeave Programmer’s Guide Version 2.0

January 2008 85

TANDEM\fifo\T2.ZIP Queued Mesages

This collection of files shows how to build and run a simple C program that reads and writes queued
messages to a FIFO that may be located on any platform with a NetWeave Agent.

File Description

BINDIN Input to the Binder; called from MAKE1IN.

MAKE1IN Input to TACL; called from MAKECF1.

MAKEFF1 A “make” file for Tandem that compiles and binds TANFC.

NWDSINI A typical INI file that shows how to address an Agent to read and write
remote queue files. (This Agent happens to be the loopback Agent.)

RF1 An obey file for executing the program.

RDF1 An obey file for debugging.

TANFC The sample C program. It opens a file, writes one record, and closes it.
Then it reopens the file for reading, reads the record, and closes it
again.

TANFH TANFC’s header file.

TTE.CAP Sample output from TANFC during a successful run.

NetWeave Programmer’s Guide Version 2.0

January 2008 86

TANDEM\ipc\T3.ZIP IPC Messaging

File Description

BINDINC Input to BINDER; called from MAKE1CIN.

BINDINS Input to BINDER; called from MAKE1SIN.

MAKE1C “Makes” the client.

MAKE1CIN TACL input; called by MAKE1C.

MAKE1S “Makes” the server.

MAKE1SIN TACL input; called by MAKE1S.

NWDSINI Sample configuration file.

RDIC1 Run the client in debug mode.

RDIS1 Run the server in debug mode.

RIC1 Run the client. (But start the server first.)

RIS1 Start the server.

TANICC The client connects to the server, writes a message to it, and waits
for the reply.

TANICH Header file for TANICC.

TANISC The server publishes as “ECHO_SERVER” and issues
nwds_ipc_accept to wait for a connection. Once connected, it waits
for a message from the client.

TANISH Header file for TANISC.

TTEC.CAP Sample output from the client program.

TTES.CAP Sample output from the server.

NetWeave Programmer’s Guide Version 2.0

January 2008 87

TANDEM\COBOL85\T4.ZIP Flat Files and Kernel Functions

The files below illustrate how to compile and link COBOL85 programs that include C language calls.
There are four simple COBOL85 programs that show how to use file calls and Guardian calls.

NOTE: If you plan to build a COBOL85 application that makes both Guardian calls and
NetWeave calls, study the sample file COB5 below.

File Description

BINDCOB1 Binder input for building COB1.

BINDCOB2 Ditto COB2.

BINDCOB3 And COB3.

BINDCOB5 And COB5. (No, you are not missing COB4; there is none.)

COB1 Sample program that makes synchronous calls to write a record to a flat
file.

COB2 Sample program that makes Guardian calls to write a record to a flat file.
This program does not call any NetWeave functions.

COB3 This sample program shows that synchronous file calls can occur in the
same program with Guardian calls, but only if carefully segregated.

COB5 Sample program that demonstrates the correct way to integrate Guardian
functions with NetWeave calls. To allow NetWeave to manage the calls to
awaitiox, you must use the NetWeave kernel functions.

COBH The standard NetWeave copybook. Use the most current copy that is
included with the NetWeave installation materials.

MAKECOB1 Compile and bind COB1.

MAKECOB2 Compile and bind COB2.

MAKECOB3 Compile and bind COB3.

MAKECOB5 Compile and bind COB5.

NWDSINI Sample INI file; remember to modify it for your system.

RCOB1 Run command for COB1.

RCOB2 Run command for COB2.

RCOB3 Run command for COB3.

RCOB5 Run command for COB5.

NetWeave Programmer’s Guide Version 2.0

January 2008 88

TANDEM\CRE\T9.ZIP

This example shows how to create TAL programs that use the CRE to incorporate C language calls.
The point is to illustrate how these modules fit together, not to build a NetWeave application.

File Description

BT The BIND command that calls BTIN.

BTIN Input to the binder to link TAL and C modules.

CC Compile the C function.

CS The source code for the C function.

CT Compile the TAL main program.

TS The source code for the TAL main program.

TANDEM\CRE\T10.ZIP

This example shows how to build a TAL main program that can call a C function, which in turn calls a
TAL function.

File Description

BT The BIND command that calls BTIN.

BTIN Input to the binder to link TAL and C modules.

CC Compile the C function.

CS The source code for the C function.

CT Compile the TAL main program.

TS The source code for the TAL main program and the called function.

UNISYS

The UNISYS/cobol74 directory contains the following sample files:

• cfile

• dms

• fifo

NetWeave Programmer’s Guide Version 2.0

October 2000 89

Glossary

Agent The NetWeave process that controls all input and output to queues, sends
notifications to clients when data base changes have occurred, and is
responsible for all aspects of security and data conversion.

Asynchronous An operation in which the applications program is allowed to continue
execution while the operation is performed. The access method informs
the application program when the operation is completed.

Broadcast services Simultaneous transmission of data to more than one destination: one
sender, unlimited receivers. Message deliveries are connectionless and
unacknowledged.

Data server services Allows all other computers in the network, regardless of platform type, to
access one computer’s file system.

Client-server model A client application sends a request message to a server program. The
server program retrieves information or updates a local database on behalf
of the (remote) client application.

Client-transaction
services

Applications where programs communicate and synchronize operations by
exchanging messages (IPC). They are used to implement on-line
transaction processing and high-speed, real-time process control
applications.

Consumer process An asynchronous procedure that is responsible for processing the data in a
message queue.

Dispatcher In a distributor-based threaded server, the Dispatcher (provided by

NetWeave as part of the nwds_dispatcher_ function set) is
responsible for creating application threads and passing messages to them
once started.

Distributor A NetWeave-provided facility for multi-threaded server processes. The
Distributor starts and manages simple application threads for processing
messages.

Event-driven design A non-procedural methodology of software development that is
asynchronous in nature, and is fundamentally multi-threaded because it
allows you to maintain multiple concurrent sessions.

NetWeave Programmer’s Guide Version 2.0

October 2000 90

Interprocess
communication (IPC)

The process by which programs communicate data to each other and
synchronize their activities.

Item list A variable-length array of parameters whose last element is a unique type,

NWDS_END_OF_LIST. Each element (item) in the array has three
components:

• Type: a constant from netweave.h that identifies a parameter

(parameter name).

• Length: the length of the parameter value. Most parameters are
either 16-bit integers (NWDS_SHORT) or 32-bit integers
(NWDS_LONG). Variable-length parameters are considered to be
of type NWDS_CHAR. For return item lists, the length is the
maximum number of bytes that can be copied to the destination
location.

• Pointer to value: for a control item list, this is the address of the
location in memory where you have stored the value you want to
assign to the parameter. For a return item list, this is the address in
which to store the returned value.

Legacy application The vast collection of commercial and scientific applications written since
the late 70s that share one or more of these features:

• The application resides on a single hardware platform.

• The user interface is the traditional character-oriented terminal.

• Access to related application functions is via menus and function
keys.

• Application data are stored in record-oriented files.

• Access to these records is typically through keys and indices.

Loopback testing mode Used for unit testing locally. Most applications, except data server, can
(and should) be constructed to run on a single platform. For example, if
you are doing IPC messaging, construct a simple client or server to interact
with your application. Such a test bed is said to run in loopback mode.

Netweave.h NetWeave header file. Contains the official definition of the API.

On-line transaction
processing (OLTP)

A system that processes multiple transactions concurrently and where the
data flows to/from the computer directly from the point of origin.

Peer-to-peer model Data communications between two nodes(processes) that have equal status
in the interchange. Any peer node can both generate messages to other
processes as well as receive (unsolicited) messages from other processes.

NetWeave Programmer’s Guide Version 2.0

October 2000 91

Polling for a completion Monitoring a flag that the completion function sets up when the
(asynchronous) NetWeave function finishes.

Producer application In FIFO message queuing, a producer puts messages at the tail of the
queue, and a consumer gets messages from the head of the queue.

Queuing services NetWeave services that store messages awaiting delivery. Queuing
services are often the core of store and forward applications.

Receiver application A process that reads and reacts to broadcast messages.

To scale
(growth of application)

To enlarge or expand either a process, or the number of messages that a
process can handle.

Sender application An application program that generates a message to broadcast.

Synchronous
function call

Initiated by a process that requests a specific event. All other processing is
suspended until a response is received for the request.

Thread,
boss thread,
worker thread

The boss/worker thread model is a thread-based mechanism for work
distribution between threads. A unit of work is delivered to the boss, which
chooses a worker thread to perform the task and then return the result to
either the boss or the originator.

UDP datagram User Datagram Protocol (UDP) is an IP protocol. Datagrams are ideal for
broadcasts because they are delivered to the IP network layer regardless
how many nodes in the network may consume the information. A
datagram is the basic unit of information passed across the Internet
environment. It contains a source and destination address along with the
data. An Internet Protocol (IP) datagram consists of an IP header followed
by the data.

Unsolicited message A message that a process receives without any prior prompting.

Workflow model

The automobile assembly line is a paradigm for the workflow model in
manufacturing. Each cell accepts the outputs of its predecessors as its
inputs, modifies the assemblage and passes its output to its successors.

