
 

 

 

 

 

 

 

 

 

 

NetWeave 

Configuration Guide 

User’s Guide for Version 2.0   January 2008 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

www.netweave.com  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2002-2008 NetWeave Integrated Solutions, Inc.. All rights reserved. 

Netweave is a registered trademark of Netweave Integrated Solutions, Inc. 

Windows is a registered trademark of Microsoft Corporation. 

CICS, MVS, and MQSeries are registered trademarks of the IBM Corporation. 

UNIX is a registered trademark of The Open Group. 

Tandem, Guardian, VMS, and OpenVMS are registered trademarks of  Hewlett-Packard. 

All other trademarks are noted in the text and are the property of their respective owners. 

.



 

 

Table of Contents 

 

INTRODUCTION ................................................................................................................... 1 

What Is NetWeave?..................................................................................................................................1 

The NetWeave Documentation Suite .......................................................................................................2 

Installing NetWeave .................................................................................................................................3 

Object Code vs. Source Code...............................................................................................................3 

ANSI C .................................................................................................................................................3 

The NetWeave Components.....................................................................................................................3 

The Architecture of the NetWeave Library..............................................................................................6 

CREATING AND EDITING INI FILES ................................................................................... 7 

The INI File..............................................................................................................................................7 

The INI File Groups .................................................................................................................................8 

The [LICENSE_GROUP] Group.........................................................................................................8 

The [TRACES] Group..........................................................................................................................8 

Message Log Facility .........................................................................................................................12 

The Root Group..................................................................................................................................13 

Naming Services ....................................................................................................................................14 

Logical Names and Aliases ................................................................................................................14 

Message Routing ................................................................................................................................14 

Load Balancing...................................................................................................................................15 

Load Balancing Example ...................................................................................................................16 

Configuration Information for Applications.......................................................................................17 

Substitution Strings ............................................................................................................................18 

CONFIGURING SESSIONS AND SERVICES..................................................................... 19 

Data Conversion.....................................................................................................................................19 

Data Compression ..................................................................................................................................20 

Data Compression Parameters............................................................................................................20 

Data Compression Examples..............................................................................................................21 

Algorithm Technical Information.......................................................................................................21 

NetWeave Security Services ..................................................................................................................24 

Authentication By Name and Password .............................................................................................24 

Authentication Details By Platform ...................................................................................................25 

Authentication By Challenge-Response.............................................................................................26 

Encryption ..........................................................................................................................................27 

THE NETWEAVE COMMUNICATIONS STACK................................................................. 31 

Using Heartbeats to Monitor a Communications Stack .........................................................................31 

Using Capping and Pooling to Control How Connections are Used......................................................32 



 

 

Connection Timeouts .........................................................................................................................34 

THE PROTOCOL LAYER ................................................................................................... 35 

TCP/IP Protocol .....................................................................................................................................35 

BROADCAST Protocol .........................................................................................................................37 

Parameters to Control the Rate of Broadcasts ....................................................................................37 

Parameters to Control Accurate Delivery of Broadcasts....................................................................38 

Broadcast Parameters for the [LEVEL2] Group ................................................................................38 

Broadcast Parameters for a Protocol Group .......................................................................................40 

Sample Files for Broadcasting............................................................................................................43 

Sender’s Sample INI File ...................................................................................................................44 

Broadcaster’s INI File ........................................................................................................................44 

Reader’s INI File ................................................................................................................................45 

DOLLAR_RECV Protocol (Tandem)....................................................................................................46 

PATHSEND Protocol (Tandem)............................................................................................................47 

QACCESS Protocol (IBM/CICS) ..........................................................................................................48 

Dual-Rail Routing ..................................................................................................................................50 

MISCELLANEOUS CONFIGURATION ISSUES................................................................. 51 

Compatibility With Older Versions of NetWeave .................................................................................51 

SQL Server for Tandem .........................................................................................................................51 

The NetWeave Dispatcher......................................................................................................................52 

The [Blocking] Group ............................................................................................................................52 

The [FILE_COPY] Group......................................................................................................................53 

The [RPC_CLIENT] Group ...................................................................................................................53 

The [RPC_SERVER] Group ..................................................................................................................53 

The [LEVEL4] Group ............................................................................................................................53 

The [NWDS_QUEUE_CONTROL] Group...........................................................................................54 

Setting the File Type ..............................................................................................................................54 

HIERARCHY OF INI FILES................................................................................................. 55 

Dynamic INI Files ..................................................................................................................................56 

Starting INI Server .............................................................................................................................57 

A Sample INI File for INI Server.......................................................................................................57 

A Sample Boot INI for an Application...............................................................................................58 

A Sample Common INI File...............................................................................................................60 

Runtime Parameters That You Can Change.......................................................................................61 

When Changes Take Effect ................................................................................................................61 

Chains of INI Files .................................................................................................................................62 

Chained File Example ........................................................................................................................62 

Chained Files and Load Balancing.....................................................................................................63 



 

 

The Dynamic INI Management Interface...............................................................................................65 

Starting INI Manager..........................................................................................................................65 

Example 1...........................................................................................................................................65 

Example 2...........................................................................................................................................66 

MESSAGE AND ERROR LOGGING CONSIDERATIONS.................................................. 68 

Basic Error Tracing ................................................................................................................................68 

Application Message Logging................................................................................................................69 

Platform-Specific Logging .....................................................................................................................69 

Windows NT ......................................................................................................................................70 

MVS/CICS .........................................................................................................................................71 

Tandem...............................................................................................................................................71 

UNIX..................................................................................................................................................71 

SUPPORTED PLATFORMS ............................................................................................... 72 

SAMPLE INI FILES............................................................................................................. 73 

Simple Communication Between Two Processes ..................................................................................73 

NetWeave FIFO Queues ........................................................................................................................74 

Producer’s INI File .............................................................................................................................74 

Consumer’s INI File ...........................................................................................................................75 

GLOSSARY ........................................................................................................................ 77 

 

 



 

 

History of Revisions 

 

 Initial Release: October 1995 

 Revision 1: October 1996 

 Revision 2: December 1997 

 Revision 3: September 1999 

 Revision 4: November 1999 

 Revision 5: February 2000 

 Revision 6: January 2001 

 Revision 7: January 2003 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 1 

Introduction 

What Is NetWeave? 

The NetWeave Distributed Services (NWDS) product provides the interoperability services required 
to build distributed applications on a heterogeneous network of hardware platforms, applications, and 
databases. The NetWeave library of remote services (the NetWeave API) provides software developers 
with messaging and data query and update capabilities wherever the data resides and in whatever form it 
exists. 

This manual explains how to install and configure a NetWeave system for a customer's particular 
environment, with special attention to those services and support files that would normally be managed 
by someone other than an applications programmer. In this manual you will learn how to: 

• Configure the interface to the communications layer 

• Define an application's architectural components in a heterogeneous computing environment 

• Manage the operational details required to make NetWeave available to the applications 
programmer 

The NetWeave configuration information is stored in text files called INI files. Once you configure 
NetWeave for an application, most of the settings in your INI files will not change. For systems and 
operations staff, this means that it is easy to integrate NetWeave startup and shutdown procedures with 
other standard system procedures. Although most configuration information tends to be quite static, 
NetWeave also provides what are called dynamic INI files that allow you to make configuration 
changes while an application is running. 

Before attempting specific NetWeave tasks such as configuring INI files, please read the rest of the 
introductory information in this chapter for an overview of the NetWeave architecture and installation 
requirements. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 2 

The NetWeave Documentation Suite 

The table below lists the documentation for the NetWeave product. You can download these documents 
from the NetWeave ftp site by connecting to ftp://www.netweave.com/middleware/doc/200/MSWord 
(for Microsoft Word format) or ftp://www.netweave.com/middleware/doc/200/PDF (for PDF format). 

Document Description Audience 

Configuration 
Guide 

Explains how to install and configure a 
NetWeave system for a customer's 
particular environment. 

Systems programmers who maintain 
the communications layer on which 
NetWeave rests. 

Operations personnel who start and 
shut down NetWeave processes in a 
distributed environment. 

Designers and managers who 
configure the applications that use 
NetWeave. 

Programmer's 
Guide 

Explains how to use NetWeave functions 
to meet the requirements of distributed 
systems. 

Illustrates working sample programs. 

Analysts who design and 
programmers who build applications 
in a distributed computing 
environment. 

API Guide Describes the NetWeave API’s function 
calls for client-transaction applications, 
messaging services, and client-database 
applications. 

Programmers who create and 
maintain NetWeave applications on 
any system. 

IBM/CICS 
Configuration 
Supplement 

Explains and illustrates features of 
NetWeave that are unique to the IBM/CICS 
environment. 

System managers and analysts who 
must install NetWeave in the 
IBM/CICS environment. 

NetWeave Print 
Process for 
Tandem 

Describes how to install and use this 
printer driver to transfer spooled output 
from a Tandem system to any computer on 
which NetWeave is installed. 

Tandem system managers. 

Enhancements Lists enhancements and significant bug 
fixes by release version. 

Project managers and programmers 
who plan, build and maintain 
NetWeave applications. 

Performance 
Tester 

Explains how to use the Performance Test 
program to simulate and measure a variety 
of NetWeave application configurations. 

Project managers and programmers 
who plan, build and maintain 
NetWeave applications. 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 3 

Installing NetWeave 

Object Code vs. Source Code 

The NetWeave installation team may not possess the unique combination of hardware platforms, 
operating systems, or communications libraries that a customer intends to use. When we do, we install 
object code and link it with the customer's libraries. When we don't, we bring source code to the 
customer’s site temporarily and compile NetWeave on the customer's computers. 

ANSI C 

NetWeave is written in ANSI C. Normally we supply all code as libraries and executable programs. If 
NetWeave cannot furnish the entire product as object code, you must have an ANSI C compiler on your 
computer. Even when NetWeave can provide object code, you must have the C runtime library on your 
system. 

The NetWeave Components 

NetWeave has four main components: 

Component Description 

NetWeave Library A library bound with the user's application that provides NWDS 
functions to the application. 

NetWeave Agent A standalone process that performs functions on behalf of the 
user's application. 

INI Server A standalone process that supplies information to an application 
from dynamic INI files. 

INI Manager A standalone process that controls INI Server operations. INI 
Manager also supports dynamic INI files. 

The NetWeave API is a collection of functions that are distributed as a library appropriate to a specific 
computing platform. A NetWeave-enabled application is a program that calls one or more of the 
NetWeave API functions. The NetWeave Agent, INI Server, and INI Manager are NetWeave-enabled 
applications that use the NetWeave library to interoperate. The remainder of this section explains the 
role of the library and the Agent in communicating and coordinating program activities. 

A NetWeave-enabled application (also called a NetWeave application) on one platform can use the 
NetWeave API to communicate with and request services from NetWeave applications and NetWeave 
Agents on other platforms, even when the platforms are connected with different communications 
protocols. 

 

NetWeave provides interfaces to the following protocols: 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 4 

• TCP/IP 

• UDP/IP 

• Dual-rail, redundant communication over parallel links 

• HTTP 

• A proprietary IPC mechanism for Tandem's Guardian operating system 

• A proprietary IPC mechanism for IBM/CICS 

In Figure 1, a NetWeave application (the one in the middle) on one platform can communicate with and 
request services from NetWeave applications on other platforms, even when the platforms communicate 
using different protocols. 

Application

NetWeave

Application

NetWeaveProtocol - A Protocol - B

Application

NetWeave

 

Figure 1. Communications among NetWeave applications 

Because the NetWeave Agent on one computer may perform services for client applications located on 
the same or different computers, the Agent may play several different roles in your application's 
architecture. In the role of protocol converter, the Agent allows two applications that use different 
communications protocols to exchange messages. In its role as NetWeave Server, the Agent may 
perform database or broadcast services – most commonly by supporting NetWeave FIFO queues in 
support of workflow architectures. 

To access a file on a remote machine, a NetWeave application must use the NetWeave Agent installed 
on the remote platform to access the requested file. To access files on its local system, an application 
doesn’t need a NetWeave Agent; it uses the NetWeave API. If the API is set up to handle file I/O, then 
even if a file no longer resides on the local system, you won’t have to update the application. The only 
change required in the application's configuration file is the entry for the new filename. 

NOTE: Because the NetWeave Agent is a standalone process (it has no API), it can be accessed 
only through the NetWeave API. 

Figure 2 on the next page illustrates the role of the NetWeave Agent. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 5 

Application 

NetWeave 

Application 

NetWeave 

NetWeave 
Server 

Local file Local file Remote file 

Protocol - A Protocol - B 

 

 

 
 

 

Figure 2. The role of the NetWeave Agent 

The table below compares a NetWeave application and a NetWeave Agent: 

Module Attribute 

NetWeave Application 
and Agent 

A NetWeave application can communicate with other NetWeave 
applications and/or NetWeave Agents; a NetWeave Agent can 
communicate with other NetWeave Agents and/or NetWeave 
applications. 

A NetWeave library and Agent installed on the same platform share 
over 80% of the same code. 

NetWeave Agent only Processes NetWeave file I/O requests from a remote NetWeave 
application. 

Reads and writes to NetWeave FIFO queues. 

Routes messages from one NetWeave application to another. 

Acts as a protocol converter. 

Sends and receives broadcast messages. 

Because the Agent is a NetWeave-enabled application that uses the NetWeave library, you configure it 
just you would any other NetWeave-enabled application. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 6 

The Architecture of the NetWeave Library 

The are two ways to look at configuration parameters: 

• Vertically, as functionally related collections of API functions. You can configure either 
interprocess communication (IPC) or FIFOs. 

• Horizontally, by concentrating on sessions that may contain multiple, functionally unrelated 
API calls. The library is a series of layers, each of which encompasses specific functional 
responsibilities. These layers interoperate through fixed interfaces, allowing you to change 
details within one layer without affecting the operation of another layer. 

Because many of the configuration parameters apply to both IPC and FIFOs, our documentation takes 
the second (horizontal) approach. From this perspective, the library consists of three principal 
architectural layers: 

1. The session or services layer is the interface between the user’s application and the transport 
layer. Some of the more important services are authentication and encryption, message 
compression, and local file services. 

2. The transport layer or communications stack provides a generic message-passing mechanism that 
the services use for their distributed functions. The communications layer shields the services 
layer from the idiosyncrasies of the protocols. 

3. The protocol layer provides the direct interfaces between NetWeave and platform-specific 
function calls. 

Most of the user-provided configuration parameters affect the services and the protocol layers. Although 
some parameters do affect the communications stack, usually you will not need to change their default 
values. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 7 

Creating and Editing INI Files 

The INI File 

An INI file is a text file that contains case-sensitive lists of parameters arranged into functional groups. 
Each group consists of a group name in square brackets, followed by a list of one or more parameters 
(keyword-value pairs separated by the equal sign). Although a parameter is defined as a keyword plus 
its value, we occasionally refer to the keyword alone as the parameter. A comment in an INI file is 
preceded by an asterisk (*) in the leftmost column. 

NOTE: The syntax and parameter information in this section applies to all layers of the 
NetWeave library. Please keep in mind that INI file information is case-sensitive; thus names 

such as [Group1] and [GROUP1] are not the same. 

The example below shows a group that contains two parameters identified by keywords: 

[GROUP_NAME] 

** This is a typical group definition. 

KEYWORD1=VALUE1 

KEYWORD2=VALUE2 

In another example, the group [Server28] below illustrates a typical NetWeave communications 
configuration for a TCP/IP connection: 

[Server28] 

PROTOCOL=TCPIP 

TCPIP_ADDRESS=localhost 

TCPIP_PORT=myservice 

You can specify configuration parameters for a given user function at the group level, at the keyword 
level, or in a few cases both. For example, the security parameters depend on settings in the 

[SECURITY] group. Data conversion parameters are defined by keywords in individual groups that 
describe files or messages. In general, when a parameter occurs in a group with a special name, you can 
often override it by making a change in another group that is specific to a file, message or application 
server. 

Some parameters are important for defining the groups for each NetWeave library layer. Others are best 
understood in the context of the functions provided by a specific layer. This section describes 
parameters and syntax conventions that apply to groups in all layers of the library. The layer-specific 
parameters are discussed in the appropriate sections. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 8 

The INI File Groups 

The [LICENSE_GROUP] Group 

The [LICENSE_GROUP] has one entry, LICENSE_KEY.  A license key is required for each system 
that uses a NetWeave agent or on which a NetWeave server application runs.  A NetWeave server is an 
application that calls nwds_ipc_publish, the function that listens for new TCP/IP connections.  To 
receive TCP/IP connections from remote clients, an application must call nwds_ipc_publish with a 
group name in the configuration file that specifies either the IP address or the host name of the local 
system. 

The LICENSE_KEY is supplied by NetWeave technical support and encodes the host name or IP 
address and the expiration date of the current license.  The license key is a string of uppercase 
alphabetic consonants. 

There is one optional parameter for Tandem’s TCP/IP, USE_HOST_FILE.  Tandem has two functions 
to obtain the name of the local system: gethostbyname and host_file_gethostbyname.  The former 
attempts to obtain the local host from a domain server.  If none exists, the function eventually times out 
and looks up the host in $system.system.hosts, the Tandem equivalent of /etc/hosts.  Unfortunately the 
timeout is long.  The latter function looks in the hosts file first.  Change the default search order by 
setting the optional parameter. 

[LICENSE_GROUP] 

LICENSE_KEY = QKFTRJJ 

USE_HOST_FILE = 1 

 

The [TRACES] Group 

The [TRACES] group controls how messages are generated and printed to an external log file. If your 

INI file does not include a [TRACES] group, NetWeave will not generate any messages or track errors. 

Because a single external failure may affect more than one layer of the NetWeave library, each affected 
module may generate one or more error messages as it responds to error conditions reported from lower 
layers of the library. Whenever possible, NetWeave collects messages generated from a single failure 
and reports them in a single, multi-lined entry in the log. 

We recommend that you configure your application to report errors. Because more than one application 
often uses the same trace file, you will want to report any application-specific errors in a separate log. 
When several applications share a log file, a single external problem at a remote host can cause errors to 
be reported simultaneously from all applications, making it hard for you to understand what happened to 
each application. 

To configure your [TRACES] group parameters, you need to understand concepts such as substitution 

strings, the boot INI file, and the root or start group. Although this information is discussed in more 
detail elsewhere in this manual, this is a good place to introduce some of these other features and show 
how they work together. 

In the example below, let’s assume that two applications use the same INI file. Within the file, each 

application has a distinct root group – let’s call them [APP1] and [APP2] – that declares the log file 
where the application’s errors will be logged. The INI file would look like this: 

[APP1] 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 9 

@TRACE_FILE@=/usr/nwds/app1.log 

[APP2] 

@TRACE_FILE@=/usr/nwds/app2.log 

* 

*** Every boot INI file should have a [TRACES] group 

* 

[TRACES] 

TRACE_LEVEL=ERRORS 

FILE_NAME=@TRACE_FILE@ 

The table on the next page describes the most commonly used [TRACES] group parameters. For more 

information about the TRACE_ARRAY parameter, see page 11. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 10 

 

Keyword Value Description 

ERRORS Captures only NetWeave error information, but will 
consolidate all error reports from a common source. 

FULL Prints all messages that the NetWeave modules 
generate. 

NOTE: Because this setting can quickly generate very 
large log files, use FULL only when you need to create a 
log file to send to NetWeave technical support for 
analysis. 

INFO Reports all error and informational messages as they 
occur. Use INFO to prevent NetWeave from 
consolidating related error messages into a single entry 
in the log file. 

TRACE_LEVEL 

CLASS Activates the TRACE_ARRAY feature that collects detailed 
trace information for selected modules. 

TRACE_ARRAY See the table 
below. 

When advised by NetWeave technical support, use this 
parameter to capture all traces from selected layers (or 
code modules) in the NetWeave library. 

FILE_NAME A substitution 
name such as 
@TRACE_FILE@ 

Specifies the output device to which NetWeave logs the 
messages. 

It’s a good idea to use a substitution name such as 
@TRACE_FILE@. You can redefine this name in the root 
group to allow multiple applications to share the same INI 
file, while each application still has a unique trace file. 

0 Trace files are overwritten.  This is the default value. TRACE_APPEND 

1 New data is appended to the trace file. 

During application testing, you may need to know more about the conditions that exist just before a 

reproducible error occurs. The TRACE_SAVE feature directs NetWeave to capture program context in a 

sliding window whose size is the product of SAVE_LINE_SIZE and SAVE_LINE_COUNT. When an 
error occurs, NetWeave reports the contents of this window of detailed trace messages. 

CAUTION: Because there is considerable additional overhead associated with TRACE_SAVE, 
avoid using it during production. 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 11 

 

Keyword Default Description 

TRACE_SAVE 0 Setting TRACE_SAVE=1 modifies TRACE_LEVEL=ERRORS 
to collect and report additional detailed NetWeave traces 
that precede an error condition. 

Use this setting when the error traces don’t give enough 
information to let you identify the context in which an error 
occurred. 

SAVE_LINE_SIZE 256 Optional. Defines the maximum length (in bytes) of each 
trace message. 

SAVE_LINE_COUNT 100 Optional. Defines how many lines to save in the sliding 
window. 

NetWeave technical support can use TRACE_ARRAY to gather detailed trace information about a 
particular code module within the NetWeave library and then use this information to evaluate the 

problem. Use TRACE_ARRAY only when advised to do so. 

TCLASS Value Modules 

20 L2_tcp.c, l2_tcpa.c, l2_tcphp.c 

22 L2_dual.c 

26 L2_bcast.c 

27 L1_udp.c, l1_udpws.c 

28 L1_udpnt.c 

29 Callback.c 

30 Level3.c 

40 Ni_conne.c 

50 Server.c 

51 Rpcserve.c 

55 Tansql.c 

60 Ux_kern.c 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 12 

Message Log Facility 

Programmers use NetWeave's message logging to integrate application messages with NetWeave trace 

messages. The messages in the log will be formatted according to the conventions of the printf 

function in C.  For more information, see "nwds_msglog" in the NetWeave API Reference Guide, and  
see “Application Message Logging" in this guide. 

Message logging is an extension of the tracing facilities. Specify the configuration parameters for 
message logging in the TRACES group.  The configuration settings determine which of the application's 
messages are printed in the log.  In the table below, configuration settings are matched with the severity 
parameter in the nwds_msglog function.  The TRACE level prints all messages.  INFO prints all except 
those with severity level NWDS_MLSTRACE.  Other levels print successively fewer messages. 

 

Keyword Default Description 

MSGLOG_LEVEL INFO TRACE -- NWDS_MLSTRACE 

INFO -- NWDS_MLSINFO 

WARNING -- NWDS_MLSWARNING 

ERROR -- NWDS_MLSERROR 

FATAL -- NWDS_MLSFATAL 

MSGLOG_ID none This option applies only to NetWeave on IBM/CICS. 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 13 

The Root Group 

The root group, sometimes called the start group, tells NetWeave where to start looking for the 
configuration information for a particular application. Because more than one application or Agent may 
use the same INI file, the root group is a convenient place to store private, application-specific 

information. An application declares the root group and INI file in the nwds_init call, and the root 
group is therefore the first group that NetWeave searches to resolve configuration issues. As noted in 

the previous section, every start group should contain a substitution string (such as @TRACE_FILE@) to 
designate a unique file to which NetWeave logs errors. 

If you use the chaining method to link INI files in a hierarchy, the last entry in the root group must be 
the name of the next INI file in the hierarchy that you want NetWeave to use. In the example below, the 

start group [APP1] lists both a trace file substitution string and a link in a hierarchy of INI files. The 

next file in this chain of INI files is common.ini. 

[APP1] 

@TRACE_FILE@=/usr/nwds/app1.err 

{/usr/nwds/common.ini} 

The root group in a NetWeave Agent’s INI file must contain a PUBLIC_NAME entry to specify the list 
of names by which the Agent is known to remote clients. An Agent hosted on a server that has more 
than one LAN connection should specify a public name for each LAN to which the server is attached. 

For example, the group [NW_SERVER] lists two groups ([NT_AGENT1] and [NT_AGENT2]) by 
which this Agent will be known to other applications. 

[NW_SERVER] 

PUBLIC_NAME={NT_AGENT1, NT_AGENT2} 

@TRACE_FILE@=server.err 

[NT_AGENT] 

PROTOCOL     =TCPIP 

TCPIP_ADDRESS=SERVER1 

TCPIP_PORT   =18476 

[NT_AGENT2] 

PROTOCOL     =TCPIP 

TCPIP_ADDRESS=SERVER2 

TCPIP_PORT   =18476 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 14 

Naming Services 

You can use any of the following NetWeave features to isolate programs from details of the physical 
environment in which they run: 

• Use a logical name (an alias) in the NetWeave API parameters that expect a file name or 
process name. 

• Define a route that an application message uses to reach either the application or the Agent that 
services it. 

• Define a logical name to refer to a collection of alternate routes to an Agent, a file, or a server. 
This feature is referred to as load balancing. 

• Use the NetWeave API and INI files to store and access the configuration information that an 
application needs. 

• Use substitution strings to simplify deployment. These strings provide a placeholder or 
variable name in one definition that can be specified in different ways by applications that 
share the INI file. 

Logical Names and Aliases 

To enhance the flexibility of the NetWeave API, you can use either a file name or process name alias as 

a parameter in a NetWeave call. For example, a call to nwds_file_open may accept either the alias 
(which NetWeave will translate) or the physical file name. Use the actual physical file name only in the 
INI file of the Agent or application server that uses the file directly. Use an alias for the file in the 
remote client’s INI file. 

In the example below, the group name [MyFile] refers to a physical file named 

/usr/mydata/file1.dat: 

[MyFile] 

NAME=/usr/mydata/file1.dat 

The program code references MyFile, and at runtime NetWeave determines from the INI file which 

file MyFile refers to. The special keyword NAME has several uses in NetWeave configurations. In this 
example, it creates an alias (MyFile) for the physical filename. 

Message Routing 

The special keyword NAME is also used to define the logical route that a message travels to reach the 
server that processes it. A route is a series of links from one NetWeave process or Agent to the next. 
The last link in the route connects to the target for the service request.  To declare a single link in a 
route, NetWeave uses a special syntax (a double colon) to specify a target service at the next node in the 

route. The example below defines a route to <TARGET> via <NODE>, with <NODE> standing for an 

arbitrary node definition, and <TARGET> referring to a target service: 

NAME=<NODE>::<TARGET> 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 15 

Because a NetWeave Agent performs all operations on NetWeave FIFO queues, configuration 
references to FIFOs frequently use this syntax. In the example below, the group defines a FIFO named 
Q1 that is mediated by a NetWeave Agent named Sun3. The target Q1 is another group in the Agent's 
INI file that is also named Q1. Of course you can name it anything you like, but it is easier to track a 
route through several hops if the target takes the same name as the group that declares the hop. The 
application's INI file contains the following: 

[Q1] 

NAME=Sun3::Q1 

And the Agent named Sun3 might have an alias defined for Q1: 

[Q1] 

NAME=/usr/netweave/fifo/q1.dat 

Or, it could declare another hop to a second Agent: 

[Q1] 

NAME=Alpha2::Q1 

Load Balancing 

Load balancing distributes connections evenly across a set of servers. The servers in the specified group 
may be any valid connection group that NetWeave supports: they may be on the same machine or on 
different machines, across different protocols, or have dual-rail connections. 

In the example below, [Service-A] consists of two servers, S1and S2. When a client application 

connects to [Service-A], the NetWeave library randomly chooses one member from the set of 
servers and connects to it. (NetWeave does not use a round-robin selection.) Let’s assume that one or 

more client applications share the same configuration of [Service-A], and that together these clients 

connect to [Service-A] 100 times. Approximately 50 of the client connections would attach to S1, 

and 50 would connect to S2. The maximum length of the NAME line limits the maximum number of 
servers in a service. 

[SERVICE-A] 

NAME={S1, S2} 

[S1] 

PROTOCOL=..... 

 

[S2] 

PROTOCOL=..... 

If servers require different proportionate loading, entries in the list may be repeated to create the desired 
ratio. The declaration in the example below assigns 40% of the load to S1 and 60% to S2. To continue 
the example from above, the clients would connect to S1 about 40 times and to S2 about 60 times. 

[SERVICE-A] 

NAME={S1, S1, S2, S2, S2} 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 16 

You can also use the load balancing feature to instruct NetWeave to retry another connection when one 

fails. When the NAME parameter has a single value, NetWeave does not retry a connection. However, if 

NAME has multiple values and a selected connection fails, the load balancing feature ensures that 

NetWeave will choose another connection and try again. The parameter LB_RETRIES in the well-

known group RPC_CLIENT controls how many times NetWeave will retry a failed connection. The 
default is 5. 

Even if you have only one server or Agent to supply your service, you can use proportionate loading to 
declare load balancing, and to declare that you want connections retried automatically. This can be 
helpful if the connection failure is a temporary condition caused by an internal network timeout. If the 
cause is not transient, repeated retries only delay an inevitable report of failure. Although the declaration 
below may look a little odd, it tells NetWeave to use proportionate loading and to retry a connection to 
S1: 

[SERVICE-A] 

NAME={ S1, S1 } 

Load Balancing Example 

Assume there is a service called XYZ. Because it requires high parallel processing capacity, this service 
must be implemented using three physically separate but functionally equivalent server processes that 
may run on different physical computers: 

• Two processes (XYZ1 and XYZ2) running on one server machine 

• One process (XYZ3) running on a second server machine 

These server machines can be accessed through DNS using the names SERVER1 and SERVER2, 
respectively, and require the following three INI files (fragments only): 

SERVER1 machine 

 [XYZ1]  

 PROTOCOL=TCPIP 

 TCPIP_ADDRESS=SERVER1 

 TCPIP_PORT=12345 

  

 [XYZ2] 

 PROTOCOL=TCPIP 

 TCPIP_ADDRESS=SERVER1 

 TCPIP_PORT=23456 

  

 etc...  

SERVER2 Machine 

[XYZ3] 

 PROTOCOL=TCPIP 

 TCPIP_ADDRESS=SERVER2 

 TCPIP_PORT=34567 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 17 

 etc... 

Client Machines 

 [XYZ] 

 NAME={XYZ1, XYZ2, XYZ3} 

  

 [XYZ1] 

 PROTOCOL=TCPIP 

 TCPIP_ADDRESS=SERVER1 

 TCPIP_PORT=12345 

  

 [XYZ2] 

 PROTOCOL=TCPIP 

 TCPIP_ADDRESS=SERVER1 

 TCPIP_PORT=23456 

  

 [XYZ3] 

 PROTOCOL=TCPIP 

 TCPIP_ADDRESS=SERVER2 

 TCPIP_PORT=34567 

  

 etc... 

Configuration Information for Applications 

For storing and retrieving keyword values, use the following NetWeave functions: 

• nwds_ini_get_name 

• nwds_ini_put_name 

• nwds_ini_delete_name 

• nwds_ini_get_int 

Conceptually these functions operate as simple database calls. For example, nwds_ini_put_name 
stores a value by the keyword (the name). For a detailed description of these functions, please see the 
NetWeave API Guide. 

To have your application retrieve run-time information from the same file that NetWeave uses, use the 

NetWeave function nwds_ini_get_name. This allows all configuration – both NetWeave- and 
application-specific parameters – to be declared in one place. And you can use NetWeave's dynamic INI 
files to modify application-specific parameters while the program is running. 

The NetWeave special group [USER_NAME_GROUP] contains application-specific data. Use this 

group to store information for your applications. For example, a call to nwds_ini_get_int 
(“TheBeast”) might return 666 to an application. 

[USER_NAME_GROUP] 

TheBeast=666 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 18 

NetWeave also uses USER_NAME_GROUP as a special keyword to identify a configuration group that 

contains parameters specific to a particular application. For example, the group [Adam] has [Eve] as 

its USER_NAME_GROUP. An application that calls nwds_init with start group [Adam] will return 

17 when it calls nwds_ini_get_int (“TheBeast”). 

[Adam] 

USER_NAME_GROUP=Eve 

[Eve] 

TheBeast=17 

Substitution Strings 

To simplify the deployment of INI files from one platform to another, you can create macro definitions, 
also referred to as substitution strings, which replace one character string with another. Use the 
character @ to delimit a substitution string as shown below: 

• @String2@=String4 

• Keyword=String1@String2@String3 
This parameter’s value is String1 followed by String4 followed by String3,  
i.e., keyword=String1String4String3. 

• Substitution strings are most often used to define a unique trace file for each application. In the 

application’s start group you define a macro (by convention, it is @TRACE_FILE@) that is 

referenced in the [TRACES] group: 

[NW_SERVER] 

PUBLIC_NAME={NT_AGENT} 

@TRACE_FILE@=server.err 

[TRACES] 

TRACE_LEVEL=ERRORS 

FILE_NAME=@TRACE_FILE@ 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 19 

Configuring Sessions and Services 

This section describes how NetWeave handles data conversion and compression. 

Data Conversion 

The settings in the INI file determine how and when NetWeave translates records or messages. For 
example, if the INI file settings enable translation for a remote file group, NetWeave translates these 
records automatically. To translate a message, NetWeave needs both the INI file and item list entry 
information. The sender or the receiver may control message translation using the item type 

NWDS_IPC_CONVERT_NAME in either nwds_ipc_read or nwds_ipc_write. 

NetWeave can translate the following data types: 

Data type Description 

SHORT System- and compiler-dependent range (a 16-bit integer). 

LONG System- and compiler-dependent range (a 32-bit integer). 

CHAR A fixed-length binary stream. 

STRING A NULL-terminated array of (usually printable) characters. 

Three keywords control translation within a group: 

Keyword Description 

DDL_ENTRY To enable translation, set DDL_ENTRY=1. 

DDL_FIELD_COUNT The number of fields in the record or message. 

DDL_FIELD_nn The data type of the field indexed by nn. 

A typical example of data conversion settings: 

DDL_ENTRY=1 

DDL_FIELD_COUNT=3 

DDL_FIELD_1=“LONG 4” 

DDL_FIELD_2=“SHORT 2” 

DDL_FIELD_3=“CHAR 4” 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 20 

Data Compression 

NetWeave's data compression option can improve transmission speeds in wide-area networks that have 
low underlying bandwidth. When a slow modem limits message throughput (in X.25 networks and 
asynchronous dial-up connections, for example), decreasing the amount of data being transmitted also 
decreases the total transmission time and generally improves the perceived response time. 

NOTE: The compression option is not recommended for short messages sent through local area 
networks. The time it takes the sending and receiving computers to compress and decompress the 
data exceeds any time saved by transmitting less data. 

NetWeave uses two common data compression algorithms, the Huffman and the Ziv-Lempel (LZ). As 
you set your compression and decompression values, keep in mind the following: 

1. The Huffman algorithm provides much faster compression. 

2. The Ziv-Lempel algorithm provides a higher compression ratio as well as somewhat faster 
decompression. 

3. In point-to-point connections for messages of modest length, the Huffman algorithm’s faster 
compression time compensates for its poorer compression ratio. 

4. In multicast situations, Ziv-Lempel’s compression ratios and decompression times are superior to 
Huffman’s. 

5. Compression and decompression times depend heavily on processor load. Do not expect the 
maximum speed in a production environment. 

6. Do not use compression to save a few milliseconds of transmission time. The cost in processor 
load outweighs any savings in transmission. 

Data Compression Parameters 

Compression is an all or nothing proposition. Because the compression parameters are described in the 

group [LEVEL4], compression applies either to all messages sent to and from applications that use an 
INI file, or it applies to none. For this reason, NetWeave recommends you enable compression only 
through definitions in the boot INI files, and make sure that both sender and receiver use the same 
settings. 

Keyword Range Default 

COMPRESSION_ON 0=off 
nonzero=on 

0 

HUFFMAN_LOWER 1 - 32000 500 

HUFFMAN_UPPER 1 - 32000 5000 

LZ_LOWER 1 - 32000 5001 

LZ_UPPER 1 - 32000 30000 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 21 

Data Compression Examples 

Each compression algorithm accepts a lower and an upper limit to define the range of message length 
(in bytes) that will be compressed. Messages that are too long or too short will not be compressed. The 
choice of compression algorithm depends on which algorithm’s bounds can better accommodate the 
message size. If both algorithms apply, NetWeave uses the one that yields the shorter message. 

The example below shows how to set the parameters for: 

• No compression of messages shorter than 1K 

• Huffman encoding for messages less than 4K bytes 

• Ziv-Lempel encoding for all others 

[LEVEL4] 

COMPRESSION_ON=1 

HUFFMAN_LOWER=1000 

HUFFMAN_UPPER=3999 

LZ_LOWER=4000 

LZ_UPPER=32000 

If you don’t want to use a particular algorithm, set its upper bound value to 1. The example below 
shows how to use Ziv-Lempel to compress all messages larger than 2 KB. (Huffman encoding is 
disabled.) 

[LEVEL4] 

COMPRESSION_ON=1 

HUFFMAN_LOWER=1000 

HUFFMAN_UPPER=1 

LZ_LOWER=2000 

LZ_UPPER=32000 

Algorithm Technical Information 

The two algorithms that NetWeave uses are based on information in The Data Compression Book by 
Mark Nelson (M&T Books, 1992) and both are in the public domain. 

One algorithm is a version of the Huffman algorithm that provides minimum redundancy coding. It is a 
static compression algorithm: phrases are replaced by tokens, and when the number of bits in the phrase 
exceeds the number of bits in the token, NetWeave compresses the data. The Huffman algorithm creates 
variable-length codes that contain an integral number of bits. 

The other algorithm uses the Ziv and Lempel sliding window technique to implement an adaptive 
encoding algorithm. An adaptive algorithm adjusts to give maximum compression to the phrases that 
occur most often. To do this, information about previous portions of a message is stored in a temporary 
“dictionary” that contains a set of fixed-length phrases found in a window into the previously processed 
text. The window size can range from 2K - 16K, and the length of the phrases from one or two to as 
many as 16 bytes. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 22 

The tables below list the results of compression tests of sample data. These tests were performed on a 
Sun SPARCstation 10 running the Solaris operating system. If you use other hardware your results will 
vary somewhat, but the relationship among the values should parallel what is shown below. Please note: 

• Each line in the table represents an average value calculated for four files of a particular size. 
Two of the files are C language source code; the other two are binary files. 

• The compression ratio is (1 - ( compressed_size / raw_size ) ) * 100 %. 

• The compression and decompression times show how long it took to execute the actual 
compression and decompression phases. The total time shown in the last column is the sum of 
the compression and decompression times in the two previous columns. 

Huffman 

File size 
(Kbytes) 

Compression 
ratio (%) 

Compression 
time (seconds) 

Decompression 
time (seconds) 

Total time 
(seconds) 

0.5 23.0 0.004 0.005 0.009 

1.0 27.6 0.006 0.007 0.013 

1.5 30.7 0.007 0.009 0.016 

2.0 32.3 0.008 0.011 0.019 

2.5 31.1 0.009 0.013 0.022 

3.0 33.7 0.010 0.014 0.024 

5.0 34.7 0.015 0.021 0.036 

10.0 36.7 0.025 0.038 0.063 

15.0 37.8 0.034 0.055 0.089 

20.0 38.5 0.044 0.072 0.116 

25.0 39.0 0.052 0.086 0.138 

30.0 39.5 0.061 0.108 0.169 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 23 

Ziv-Lempel 

File size 
(Kbytes) 

Compression 
ratio (%) 

Compression 
time (seconds) 

Decompression 
time (seconds) 

Total time 
(seconds) 

0.5 35.9 0.008 0.001 0.009 

1.0 36.2 0.019 0.002 0.021 

1.5 39.1 0.027 0.003 0.030 

2.0 41.6 0.036 0.004 0.040 

2.5 44.7 0.048 0.005 0.053 

3.0 46.2 0.060 0.006 0.066 

5.0 52.2 0.110 0.009 0.119 

10.0 56.4 0.200 0.016 0.216 

15.0 58.6 0.305 0.025 0.330 

20.0 60.3 0.410 0.028 0.438 

25.0 60.8 0.530 0.036 0.566 

30.0 61.8 0.610 0.044 0.654 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 24 

NetWeave Security Services 

NetWeave security functions include authentication, access control, and encryption. Authentication is 
the process of verifying that a client is who it claims to be. NetWeave supports two distinct 
authentication mechanisms: 

• Authentication by name and password attempts to validate the client using host operating 
system calls to the host’s security tables. This type of authentication requires the services of a 
NetWeave Agent on the host. 

• Challenge-response authentication is more secure than authentication by name and password, 
and does not require the presence of an Agent to mediate the authentication process. For 
challenge-response, the NetWeave libraries in the server and client conduct a secret negotiation 
(transparent to the client and server applications) to prove the client’s identity. 

The NetWeave access control procedure determines whether a remote client has access rights to open a 
host file. This procedure uses the host’s operating system calls to check the client’s access rights. A 
NetWeave Agent on the host mediates these rights. 

Encryption protects a message from being read by anyone other than its intended readers. NetWeave 
provides several encryption algorithms for encoding and decoding messages. All encryption algorithms 
use private keys. 

NOTE: The password obfuscation feature, which operates independently of the Encryption 

feature, disguises the password passed in the nwds_password API. In older versions of 
NetWeave, obfuscation was optional and controlled by an INI file parameter in the Security 
Group. It is now automatic and passwords are always disguised. 

Authentication By Name and Password 

The NetWeave API for connecting a remote client to a host computer is an interface with the standard 
terminal validation functions of the host’s operating system. Authentication by username and password 
is intended to simulate logging in through a remote terminal. The NetWeave Agent has the central role 
in authentication by username and password because only the Agent can access the appropriate tables 
on the host. A remote client enters a username and password that the Agent checks against the host 
system’s security tables. 

The following API calls are used for authentication by username and password: 

Function Description 

nwds_logon Presents the user's name to the NetWeave Agent. 

nwds_password Presents the user's password to the Agent. If the Agent accepts the 
logon and password as valid, it starts a session for the user. 

nwds_logoff Declares the user's intention to end the current session. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 25 

The [SECURITY] group in the NetWeave Agent’s INI file controls username and password 
authentication: 

[SECURITY] 

SECURITY_ON=1 

The default is no security (SECURITY_ON=0). If the [SECURITY] group is not defined, or if 

SECURITY_ON is missing (or commented out), then the Agent runs without security. 

Authentication Details By Platform 

Windows OS 

On the PC, NetWeave manages authentication using the [SECURITY] group entries in the Agent’s INI 

file. The [SECURITY] group contains a list of user IDs and passwords in the following format: 

user id=password 

After authentication by the Agent, a user has full access to all files and resources to which the Agent 
process has access. When a file is opened on a client’s behalf, there is no additional check to determine 
whether the client has access rights to that file. A sample PC security entry for user JOHNDOE (using 
the password “secret”) is shown below: 

[SECURITY] 

SECURITY_ON=1 

JOHNDOE=secret 

UNIX 

The NetWeave Agent uses the UNIX account database to verify the user name and password. To 

process user requests, the Agent performs a setuid() system call to assume the user’s ID – and thus 

is given only the access capabilities that the client has. NetWeave does not verify file access capabilities 
independently. Instead it lets the operating system determine access rights when the Agent, in the guise 
of the client, tries to open the file. 

Tandem Guardian OS 

On Tandem, NetWeave uses the system call USER_AUTHENTICATE_ to verify a client’s authenticity. To 
determine whether a client may access legacy (Enscribe) and FIFO files on Tandem Guardian system, 

NetWeave uses the system call USERNAMETOUSERID. For example, an application on a remote 
workstation may open and access an Enscribe file only if it logs on as a user who has access rights 
consistent with Guardian conventions. These security features are optional. 

NOTE: NetWeave’s use of Guardian functions to control access to files does not apply to C files 
or to NonStopSQL tables on Tandem. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 26 

Digital VAX/VMS and OpenVMS 

To verify a client’s authenticity, NetWeave uses the system call sys$getuai. To control access to 

legacy (RMS) files on VMS and OpenVMS, NetWeave uses the system call sys$check_access. 

IBM/CICS 

The NetWeave Agent is not implemented for this release of IBM/CICS. Because the Agent controls 
client verification and file access rights, these functions are not implemented for IBM/CICS. 

Authentication By Challenge-Response 

Challenge-response authentication offers better protection than authentication by name and password. 
For challenge-response, the server and client conduct a secret negotiation (transparent to the client and 
server applications) to prove the client’s identity. Challenge-response authentication does not require 
any coding changes, and it does not require a NetWeave Agent on the host. 

NOTE: In release 2.0, challenge-response authentication requires encryption. If you want to use 
challenge-response, be aware that all messages between the client and server will be encrypted, 
not just the secret negotiations required to authenticate the client. This dependency will be 
removed in a future release of NetWeave. 

Here’s how challenge-response authentication works: 

1. The client sends its name to the server (or NetWeave Agent). 

2. The server looks up the client's name in its INI file and retrieves the client's private key. 

3. The server generates a random message and encodes it with the client's key. 

4. The server sends this encoded message (the challenge) to the client. 

5. The client decodes the challenge and returns the decoded message as its response. 

6. If the decoded message matches the original random message, access is granted. 

To configure challenge-response for a client, add the following parameters to the server connection 

group in the client's INI file. 

CHALLENGE_RESPONSE=1 

ENCRYPTION_REQUIRED=1 

ENCRYPTION_TYPE=NWE1 

LOGON_NAME=PS0 

PS0=abcdefghijkl 

The LOGON_NAME tells the server who the client is. To find the client’s private key, NetWeave uses the 

value of the LOGON_NAME parameter as a keyword. In this example, the PS0 parameter is the client's 

private key, which should be 12 characters in length. If it is shorter, NetWeave automatically pads it to 
12. If it is longer, the system ignores the extra characters. 

NOTE: A key of 12 characters is equivalent to encoding with a key length of 84 bits. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 27 

To configure challenge-response for the server, add the following parameters to the public (also called 
publish) group in the server’s INI file: 

CHALLENGE_RESPONSE=1 

ENCRYPTION_REQUIRED=1 

ENCRYPTION_TYPE=NWE1 

In addition to these required parameters, you must add a parameter for each client that will be permitted 
to connect to this server. These additional parameters look something like this: 

PS0=abcdefghijkl 

PS1=bcdefghijklm 

PS2=cdefghijklmn 

PS3=defghijklmno 

PS4=efghijklmnop 

PS5=fghijklmnopq 

PS6=ghijklmnopqr 

PS7=hijklmnopqrs 

PS8=ijklmnopqrst 

PS9=jklmnopqrstu 

NOTE: In release 2.0, clients’ private keys are stored in INI files in the clear. In the next release, 
these keys will be stored in encoded form in a special file.  

Encryption 

The table below lists the three NetWeave encryption types: 

Encryption type Description Other required parameters 

NWE1 The standard public domain algorithm, 
provided at no additional charge. 

None 

DES XyGate/SE DES algorithm for 56-bit 
keys. There is an additional license 
charge for this algorithm. 

DIFFIE_HELLMAN_KEYSIZE 

3DES XyGate/SE Triple DES algorithm for  
168-bit keys. There is an additional 
license charge for this algorithm. 

DIFFIE_HELLMAN_KEYSIZE 

NOTE: As part of an Embedder’s Agreement with Xypro Technology Corporation in California, 
Vertex bundles the XyGate/SE Encryption component with its NetWeave middleware to provide 
for DES and Triple DES (3DES) encryption schemes. The XyGate/SE package is currently 
supported on PCs running Windows or NT, UNIX, and Tandem. 

 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 28 

Individual sessions may use different encryption algorithms. To enable encryption, add the following 
line to the logical group that defines the connection parameters: 

ENCRYPTION_REQUIRED=1 

In the example below, the connection group TEST1 uses DES encryption and a Diffie-Hellman key of 
512 bits: 

[TEST1] 

PROTOCOL=TCPIP 

TCPIP_ADDRESS=198.198.7.122 

TCPIP_PORT=17895 

ENCRYPTION_REQUIRED=1 

ENCRYPTION_TYPE=DES 

DIFFIE_HELLMAN_KEYSIZE=512 

Please note the following: 

• Both the client and the application to which it connects must have identical information in their 
INI files. 

• Encryption may be applied only to sessions between client and server applications, or between 
a remote client and a NetWeave Agent. Do not apply encryption to sessions between 
applications located on the same system. 

• If you are using DES or 3DES, the XyGate key file and the executable must be located in the 
same folder. 

Parameters for XyGate Encryption Algorithms 

Both DES and TripleDES (3DES) accept the DIFFIE_HELLMAN_KEYSIZE parameter, which affects 
the time required to initialize the keys for a given session. The longer the key, the longer it takes to 
connect to the peer application. The default length is 1024 bits. 

XyGate Status Codes 

The XyGate encryption library is embedded within the NetWeave library. Errors from XyGate are returned 
to NetWeave and reported in the NetWeave error log as numeric values that can be interpreted as follows: 

#define CRYPT_OK                0           /* No error */ 

 

/* Internal errors */ 

 

#define CRYPT_ERROR            -1           /* Nonspecific error */ 

#define CRYPT_SELFTEST         -2           /* Failed self-test */ 

 

/* Error in parameters passed to function */ 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 29 

#define CRYPT_BADPARM          -10          /*Generic bad argument to function */ 

#define CRYPT_BADPARM1         -11          /*Bad argument, parameter 1*/ 

#define CRYPT_BADPARM2         -12          /*Bad argument, parameter 2*/ 

#define CRYPT_BADPARM3         -13          /*Bad argument, parameter 3*/ 

#define CRYPT_BADPARM4         -14          /*Bad argument, parameter 4*/ 

#define CRYPT_BADPARM5         -15          /*Bad argument, parameter 5*/ 

#define CRYPT_BADPARM6         -16          /*Bad argument, parameter 6*/ 

#define CRYPT_BADPARM7         -17          /*Bad argument, parameter 7*/ 

#define CRYPT_BADPARM8         -18          /*Bad argument, parameter 8*/ 

#define CRYPT_BADPARM9         -19          /*Bad argument, parameter 9*/ 

#define CRYPT_BADPARM10        -20          /*Bad argument, parameter 10*/ 

#define CRYPT_BADPARM11        -21          /*Bad argument, parameter 11*/ 

#define CRYPT_BADPARM12        -22          /*Bad argument, parameter 12*/ 

#define CRYPT_BADPARM13        -23          /*Bad argument, parameter 13*/ 

#define CRYPT_BADPARM14        -24          /*Bad argument, parameter 14*/ 

#define CRYPT_BADPARM15        -25          /*Bad argument, parameter 15*/ 

 

/* Errors due to insufficient resources */ 

 

#define CRYPT_NOMEM            -50          /* Out of memory*/ 

#define CRYPT_NOTINITED        -51          /* Data has not been initialized*/ 

#define CRYPT_INITED           -52          /* Data has already been 

initialized*/ 

#define CRYPT_NOALGO           -53          /* Algorithm unavailable*/ 

#define CRYPT_NOMODE           -54          /* Encryption mode unavailable*/ 

#define CRYPT_NOKEY            -55          /* Key not initialised*/ 

#define CRYPT_NOIV             -56          /*IV not initialised*/ 

#define CRYPT_NOLOCK           -57          /*Unable to lock pages in memory*/ 

#define CRYPT_NORANDOM         -58          /*No reliable random data available*/ 

#define CRYPT_BUSY             -59          /*Context is busy (async operation)*/ 

 

/* CAPI security violations */ 

 

#define CRYPT_NOTAVAIL         -100   /*Operation not available for this 

algo/mode*/ 

#define CRYPT_KEYPERM          -101   /*No key permissions for this operation*/ 

#define CRYPT_WRONGKEY         -102   /*Incorrect key used to decrypt data*/ 

#define CRYPT_INCOMPLETE       -103   /*Operation incomplete/still in progress*/ 

#define CRYPT_COMPLETE         -104   /*Operation complete/can't continue*/ 

#define CRYPT_ORPHAN           -105   /*Encryption contexts remained allocated*/ 

 

/* High-level function errors */ 

 

#define CRYPT_DATASIZE         -150   /*Too much data supplied to function*/ 

#define CRYPT_PKCCRYPT         -151   /*PKC en/decryption failed*/ 

#define CRYPT_BADDATA          -152   /*Bad data format in object*/ 

#define CRYPT_BADSIG           -153   /*Bad signature on data*/ 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 30 

/* Key collection errors */ 

 

#define CRYPT_KEYSET_OPEN       -200   /*Cannot open key set*/ 

#define CRYPT_KEYSET_NOTFOUND   -201   /*Key or key info not found in key set*/ 

#define CRYPT_KEYSET_DUPLICATE  -202   /*Key already present in key set*/ 

#define CRYPT_KEYSET_READ       -203   /*Cannot read data from key set*/ 

#define CRYPT_KEYSET_UPDATE     -204   /*Cannot update key set*/ 

 

/* Data enveloping errors */ 

 

#define CRYPT_ENVELOPE_OVERFLOW. -250   /*Too much data in envelope*/ 

#define CRYPT_ENVELOPE_UNDERFLOW -251   /*Too little data in envelope*/ 

#define CRYPT_ENVELOPE_RESOURCE  -252   /*Need resource to proceed*/ 

 

/* Certificate errors */ 

 

#define CRYPT_CERT_NONE         -300    /*No errors defined yet*/ 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 31 

The NetWeave Communications Stack 

The previous sections explained how to use the parameters that configure the NetWeave functions of the 
session or services layer. This section describes the parameters of the communications stack, the layer 
between the session and the individual communications protocols. Most of the communications stack 
parameters directly affect the performance of an application. 

In this section, the word connection refers to a physical link between two computers. Parameters at the 
protocol layer define how to configure connections. The word session refers to a logical link between 
applications on two computers. A connection may support more than one session at a time. 

Using Heartbeats to Monitor a Communications Stack 

NetWeave uses heartbeats for timely detection and reporting of certain types of failures in the 
underlying network connection. When properly set, heartbeats improve an application’s ability to detect 
and react to failures, and thereby improve the application’s throughput and reliability. Because 
heartbeats are confined to the lower levels of NetWeave’s communications stack, applications are never 
aware of them directly. 

The heartbeat mechanism provides an efficient way to verify that a connection is still active. Let’s 
assume that two NetWeave-enabled applications establish a session with each other. Each time a 
message is sent from one to the other, NetWeave starts the heartbeat timer. If the timer expires, it means 
the sending application has not sent another message since the timer was started. In order to regularly 
reset the timer, the NetWeave communications stack automatically sends a heartbeat message, a tiny 
message to show that this side of the connection is still active. 

This example considered a heartbeat only from the message sender’s point of view. However, you can 
also set a timeout that reflects the receiver’s point of view. If you intend to use heartbeats, set both types 
of timers as follows: 

• Use keyword SEND_HEARTBEAT_TIMER to specify the length (in seconds) to wait before 

the communications stack automatically sends a heartbeat message. 

• Use keyword RECV_HEARTBEAT_TIMER to specify the length (in seconds) to wait for any 

message from the sender. 

You can set the timer parameters either in the protocol group that defines a specific connection, or in the 

special well-known group [LEVEL3]. Although parameters set in the [Level3] group apply to all 
connections defined at the protocol layer, the heartbeat parameters at the protocol layer override the 

[Level3] settings. To use the heartbeat mechanism, you must set HEARTBEAT_REQUIRED=1 at the 

protocol layer for each connection that is to be monitored. 

CAUTION: Use the heartbeats feature only with asynchronous applications. Using heartbeats 
with synchronous programs will cause the partner applications and/or agents to terminate. 

CAUTION: To provide reliable message delivery over UDP/IP, the broadcast protocol uses its 
own heartbeat mechanism between NetWeave Agents. If an Agent is configured for the 

NetWeave broadcast protocol, do not enable the generic heartbeat mechanism in the [LEVEL3] 

group. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 32 

NOTE: NetWeave releases earlier than 1.05.05 do not support heartbeat in the communications 
stack. Subsequent releases detect when they are communicating with an older release, and disable 
heartbeats on those connections. 

Use the following parameters to set the heartbeats: 

Keyword Default Description 

HEARTBEAT_REQUIRED 0 Optional. To enable the heartbeat feature, set this 
parameter to any non-zero value. 

NOTE: This parameter affects only the protocol 
layer. 

RECV_HEARTBEAT_TIMER 120 The number of seconds the receiving side waits to 
hear from a partner before it terminates the open 
connection(s). This value should be two to three 
times larger than SEND_HEARTBEAT_TIMER. 

SEND_HEARTBEAT_TIMER 60 The number of seconds that the sending system 
waits after sending the last message before emitting 
a heartbeat message. 

Using Capping and Pooling to Control How Connections are Used 

To conserve system resources, NetWeave attempts to minimize connections at the protocol layer and 
instead interleaves (multiplexes) several sessions over a single connection. A connection is initially 
established to accommodate the first session, and as other sessions are created, their traffic is added on. 
When the last of these sessions terminates, the connection terminates too. 

Capping limits the number of sessions that may share a connection. If your sessions tend to have high 
volumes of message traffic, a single physical connection may not have enough bandwidth for several 
such sessions. By setting a cap on the number of simultaneous sessions, you avoid flooding the 
connection with too much traffic. 

When a cap is in effect, if NetWeave reaches the limit of permissible sessions, every additional attempt 
to establish a session will fail. When this happens, NetWeave automatically creates (if possible) a new 
connection to handle the additional sessions. 

NOTE: Capping is not a magic solution. If your network’s underlying physical bandwidth is 
inadequate for the expected session rates, it won’t help to cap the number of sessions and create 
more connections over the same physical LAN. Capping can help only when connections are 
logically related to a specific physical path or to a specific CPU. For example, capping is 
effective when two computers, each consisting of a cluster of CPUs, communicate over a network 
that can create multiple independent physical paths between them. 

To set the cap limit, use the parameter MAX_CIRCUITS. You can define the capping parameters 

generically at the network layer by changing the settings in the [Level3] group, or you can cap 

individual connections at the protocol layer. If you set MAX_CIRCUITS in [Level3], the cap applies 

to all connections, unless you override it by setting different caps for individual protocol groups. 

In the sample configuration below, connection groups [GROUP1] and [GROUP2] are configured with 

MAX_CIRCUITS of 2. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 33 

[GROUP1] 

PROTOCOL=TCPIP 

TCPIP_ADDRESS=localhost 

TCPIP_PORT =19130 

 

[GROUP2] 

PROTOCOL=TCPIP 

TCPIP_ADDRESS=localhost 

TCPIP_PORT =19130 

 

[LEVEL3] 

MAX_CIRCUITS=2 

In the example below, because the sample configuration has no MAX_CIRCUITS definition in 

[Level3], [GROUP1] is configured with two circuits per physical link and [GROUP2] is configured 

with three. If [Level3] did contain a MAX_CIRCUITS definition, this configuration would apply to 
all connection groups, unless you specifically overrode it by setting group-specific values within a 
connection group. 

[GROUP1] 

PROTOCOL=TCPIP 

TCPIP_ADDRESS=localhost 

TCPIP_PORT=19130 

MAX_CIRCUITS=2 

 

[GROUP2] 

PROTOCOL=TCPIP 

TCPIP_ADDRESS=localhost 

TCPIP_PORT=19130 

MAX_CIRCUITS=3 

 

[LEVEL3] 

… 

Pooling extends the lifetime of a connection by keeping it active even after the last session on it ends. If 
many sessions intermittently use a common connection, there may be brief intervals when no session is 
using the connection. Because it is more expensive to destroy and then recreate a connection than it is to 
leave it in place for a short period of time, pooling provides a mechanism for using a connection more 
efficiently. 

To activate the pooling feature, use the setting LINK_POOLING=1. Use LINK_POOL_TIMER to 
specify how long (in seconds) the connection should stay active. The default is 300 seconds. 

You can define the pooling parameters in the [Level3] group, or you can set pooling for individual 

connections at the protocol layer. If you set pooling in [Level3], it applies to all connections. 

In the sample configuration below, connection groups [GROUP1] and [GROUP2] are configured with 

LINK_POOLING set on, and a timeout value of 60 seconds. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 34 

[GROUP1] 

PROTOCOL=TCPIP 

TCPIP_ADDRESS=localhost 

TCPIP_PORT =19130 

 

[GROUP2] 

PROTOCOL=TCPIP 

TCPIP_ADDRESS=localhost 

TCPIP_PORT=19129 

 

[LEVEL3] 

LINK_POOLING=1 

LINK_TIMEOUT=60 

In the example below, connection group [GROUP1] is enabled with link pooling and a timeout of 60 

seconds. Connection group [GROUP2] is not configured with link pooling. If you specify parameters 

for LINK_POOLING in the [Level3] group, they will apply to [GROUP2] but not [GROUP1]. 

[GROUP1] 

PROTOCOL=TCPIP 

TCPIP_ADDRESS=localhost 

TCPIP_PORT=19130 

LINK_POOLING=1 

LINK_TIMEOUT=60 

 

[GROUP2] 

PROTOCOL=TCPIP 

TCPIP_ADDRESS=localhost 

TCPIP_PORT=19129 

 

[LEVEL3] 

… 

Connection Timeouts 

The parameter CONNECT_TIMEOUT may be specified in either the LEVEL3 group or in a protocol 
group to limit how long NetWeave will wait for a non-blocking call to nwds_ipc_connect to complete.  
When declared in LEVEL3, the timeout value (in seconds) applies to all protocols.  When specified in a 
protocol group, it overrides the value, if any, declared in the LEVEL3 group.  Connection timeouts do 
not apply to blocking, synchronous connections. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 35 

The Protocol Layer 

The protocol layer is the lowest layer in the NetWeave architecture. The protocol layer is important 
because this is where NetWeave interacts with communications resources in the computer system.  
To form a connection between a client application on one platform and a server on another, the INI files 
on each must have identical entries for the connection group they will use to make the connection. You 

can set the protocol parameters either generically in the [Level2] group, or individually within each 
connection group. (A connection group is also referred to as a protocol group.) 

TCP/IP Protocol 

All NetWeave platforms support the TCP/IP protocol, which is used to make point-to-point connections 
between pairs of IP addresses and ports. Each computer in the network has at least one IP address, and 
each address has many ports associated with it. If a computer is attached to more than one physically 
distinct LAN, it has more than one IP address. 

You can specify IP addresses and ports either as logical names, or as numerical addresses. Logical 
address names are stored in the system's HOST file, while logical port names are stored in the 
SERVICES file. For a numerical address, use the standard IP form dotted octets. For example, 127.0.0.1 
is the IP address of the computer known as localhost. 

For some computer systems, such as Tandem or IBM/CICS, you must specify a few additional TCP/IP 

parameters. For example, Tandem requires a TCPIP_PROCESS_NAME that identifies the TCP/IP 
process associated with a particular IP address. For more information about the TCP/IP parameters for 
IBM/CICS, see the NetWeave Installation and Operations Guide for IBM/CICS. 

Some parameters for TCP/IP are stored in the group [LEVEL2] and apply to all TCP/IP connections 
that are defined in the INI file. Parameters for a specific connection are specified in an individual 

connection group. Not all parameters are used on all platforms. In the table below, LEVEL2=Yes 

means that the parameter, if specified, must be defined in the [LEVEL2] group. 

CAUTION: Always use the default settings unless your system/network administrator or 
NetWeave technical support specifically instruct you to change them. 

Keyword Default LEVEL2 Description Platform 

TCPIP_BUFFER_SIZE 8192 Yes The maximum size (in bytes) of an IP 
packet.  

All 

TCPIP_QUEUE_DEPTH 10 Yes The initial estimate of the number of 
packets of TCPIP_BUFFER_SIZE that 
NetWeave must accumulate to form 
the largest expected message. 

All 

MAX_SEND_SIZE See 
Descrip-
tion 

No The number of bytes in the largest 
frame you expect to send or receive on 
the connection defined by this group. 

NOTE: Default=TCPIP_BUFFER_SIZE. 

MAX_SEND_SIZE must not exceed the 
TCPIP_BUFFER_SIZE value. 

All 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 36 

Keyword Default LEVEL2 Description Platform 

TCPIP_ADDRESS  No Required. Either a host name or a 
dotted IP address. Consult your 
system manager for this value. 

All 

TCPIP_BACKLOG 4 No A parameter to the sockets call listen 
that indicates how many pending calls 
can be queued while NetWeave 
answers the current call. This 
parameter affects the call 
nwds_ipc_publish. 

All 

TCPIP_PORT  No Required. Either a service name or a 
numeric IP port. Consult your system 
manager for this value. 

All 

CLIENT_TCPIP_ADDRESS  No Bind to a specific address before 
calling connect. Use this parameter to 
cross firewalls that filter by IP address 
and port. 

Window 
Tandem 

CLIENT_TCPIP_PORT  No Use with CLIENT_TCPIP_ADDRESS to 
specify the port. 

Windows 
 Tandem 

TCP_NODELAY 0 Yes If TCP_NODELAY=1, TCP/IP will send 
a packet immediately. The default is to 
wait a short interval for additional data. 

Windows 
UNIX 

Tandem 

TCP_LINGER 1 Yes The TCP/IP closesocket call performs 
a graceful, non-blocking close. Any 
queued data is sent (if possible), and 
the underlying socket is not released 
until the data has been sent. 

Windows 

TCP_LINGER_ONOFF 1 Yes For hard close, set onoff=1 and 
time=0. The other side gets condition 
ECONNRESET, and any data waiting to 
be sent is discarded. 

Windows 

TCP_LINGER_TIME 0 Yes Use with TCP_LINGER to specify how 
long (in seconds) to wait for the non-
blocking close to finish. 

Windows 

TCP_SNDBUF_SIZE None Yes Sets the socket option SO_SNDBUF. Windows 

TCP_RCVBUF_SIZE None Yes Sets the socket option SO_RCVBUF. Windows 

REQUEST_QUEUE_DEPTH 10 No The initial number of packets 
NetWeave reserves for storing a 
complete message. 

IBM/ 
CICS 

TRIES 10 No The number of times TCPA (the router) 
will try to connect to TCPB (its partner) 
before returning failure. 

IBM/ 
CICS 

TRANSACTION TCPB No The task name of the TCPB partner 
process. 

IBM/ 
CICS 

MAC_TCP_DEVICE .IPP Yes The device name passed to the 
PBOpen call. 

MacOS 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 37 

Keyword Default LEVEL2 Description Platform 

TCPIP_MAX_EXIT_WAIT 5 Yes How long (in seconds) NetWeave 
waits after shutdown for outstanding 
I/O to complete. 

Novell 
LAN 

TCPIP_MIN_EXIT_WAIT 2 Yes The minimum time (in seconds) that 
NetWeave waits for I/O to complete. 

Novell 
LAN 

TCPIP_INETD_NAME BG: Yes The name passed in the init descriptor 
in the call to sys$assign. 

Digital 

TCPIP_PROCESS_NAME $ztc0 No The name of the TCP/IP process that 
controls the LAN on which this 
connection is configured. 

Tandem 

MAX_RETRY_COUNT 3 Yes The number of times to retry a write if 
the error is ENETUNREACH. 

Tandem 

BROADCAST Protocol 

Broadcast protocol allows an application to send or receive broadcast messages. Any number of 
applications may receive a broadcast message. Broadcasts are sent and received on a logical channel 
called a port. The broadcast port is actually the name of the INI file group that contains the parameters 
that the NetWeave Agent uses for sending and receiving broadcasts. 

For a user’s application, the broadcast port group specifies a route to a local NetWeave Agent. For 
example, a sender’s broadcast port definition can look like this: 

[MY_BROADCAST] 

NAME=AGENT1::BCAST 

The broadcast port definition for a receiving application is quite similar: 

[THEIR_BROADCASTS] 

NAME=AGENT2::BCAST 

When the Agent sends broadcast messages on behalf of the applications located on the same computer 
where it resides, the Agent is called a broadcaster. When it receives broadcast messages on behalf of 
the applications located on the computer where it resides, the Agent is called a receiver. The rest of this 
section describes the parameters in the Agent’s INI file that control the Agent’s role as broadcaster 
and/or receiver. 

Parameters to Control the Rate of Broadcasts 

One objective of NetWeave broadcast technology is to reach a maximum stable rate of transmission at 
which all intended recipients receive all messages. To specify a maximum transmission rate (expressed 

in milliseconds between transmissions), use the INI file parameter THROTTLE_INTERVAL. The larger 

the THROTTLE_INTERVAL, the slower the throughput. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 38 

Throttling is dynamic. The broadcast rate cannot exceed the rate derived from THROTTLE_INTERVAL, 

and does not fall below the rate calculated from MAX_THROTTLE_INTERVAL. If a recipient detects 
loss of messages, it sends a special control message back to the Agent that controls the broadcasts. 
When the sending Agent receives a control message, it reduces its rate of broadcasting by increasing the 

length of the throttle interval. THROTTLE_ADJUST determines the increment by which the throttle 
interval is increased. If the broadcaster has been sending at a rate below the maximum rate and has not 
been notified of additional loss of messages, it will gradually increase its transmission rate by lowering 

the throttle interval back to the user-defined optimum (the original THROTTLE_INTERVAL setting). 

NOTE: If an application tries to flood the network with too many messages at one time, a call to 

nwds_ipc_broadcast returns the error LEVEL2_WOULD_BLOCK. 

Parameters to Control Accurate Delivery of Broadcasts 

UDP/IP is the basis of NetWeave’s broadcast technology. In UDP/IP, a sender broadcasts a message to 
an undefined collection of receivers. There is no feedback (reverse message flow) from any recipient 
back to the broadcaster to indicate who is listening, what they hear, or whether they hear the messages 
completely or in the correct order.  

To compensate for these UDP/IP limitations, NetWeave generates several special control messages to 
provide a small amount of reverse message flow. The broadcaster analyzes any control messages it 
receives to determine what information was missed. If the broadcaster still has a copy of the missing 
messages, it retransmits them. However, a receiver that has missed too many messages will stop trying 

to receive broadcasts and will return the error condition NWDS_FILTER_ERROR to the client 
applications that have registered and are waiting for broadcasts. 

To define how and when you want a broadcaster to react to control messages, use the following INI file 
parameters: 

• If one recipient is having trouble, there’s a good chance that others are too. When a broadcaster 
receives the first control message, it briefly suspends its regular transmission to collect the 

expected flurry of control messages. Use RECOVERY_INTERVAL to specify how long the 
broadcaster must pause. 

• While suspended, the broadcaster counts any additional control messages it receives. Use 

CYCLE_THRESHOLD to specify the maximum number of messages to count while waiting. If 

the CYCLE_THRESHOLD is reached during the RECOVERY_INTERVAL, the broadcaster 
extends the length of the pause, resets its count, and increments a cycle counter to indicate that 
some of the recipients are still having trouble receiving error-free transmissions. 

• If the broadcaster reaches the maximum number of recovery cycles specified in the parameter 

MAX_CYCLES, the broadcaster assumes that recovery is not possible for some recipients and 
resumes broadcasting from where it left off. Recipients who never receive a missed message 

will eventually sign off and return NWDS_FILTER_ERROR to their clients. 

Broadcast Parameters for the [LEVEL2] Group 

The following parameters apply to all broadcast ports: 

Keyword Default Description 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 39 

BCAST_MAX_SIZE UDP_BUFFER_SIZE The maximum message size (in bytes) 
that a user intends to broadcast.  

BCAST_MAX_WRITE_QUEUE_
DEPTH 

100 Large broadcast messages are sent as a 
series of IP datagrams. This parameter 
specifies the maximum number of 
datagrams available for buffering 
broadcasts. When the broadcaster’s 
queue depth reaches this value, a call to 
nwds_ipc_broadcast returns 
NWDS_WOULD_BLOCK. 

NOTE: Because this is not a fatal error, 
you can retry the write later. 

BCAST_QUEUE_DEPTH 100 The maximum number of broadcast 
messages (not datagrams) that 
NetWeave can buffer during 
asynchronous operation. 

SENDER_ID See Description Each broadcaster must have a unique ID 
number. 

If a workstation sends broadcasts, 
SENDER_ID is required and there is no 
default value. If a workstation’s 
applications only receive broadcasts, you 
do not have to set a SENDER_ID. 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 40 

Broadcast Parameters for a Protocol Group 

The following parameters are used to define a protocol group for each broadcast port: 

Keyword Default Description 

COUNTS_INTERVAL 5 The length (in minutes) of each data collection 
cycle. See MAX_COUNTS_THRESHOLD below. 

CYCLE_THRESHOLD 10 Defines how many control messages the system 
perceives as too many. If a broadcaster receives 
more than this number of control messages within 
a recovery cycle, it starts another recovery cycle. 

HEARTBEAT_INTERVAL 5 The time (in milliseconds) that a broadcaster waits 
for another message to be broadcast before it 
sends a special message to tell receivers that the 
broadcast mechanism is still active. 

HEARTBEAT_TIMEOUT 15 The time (in milliseconds) that a receiver waits for 
the broadcaster’s heartbeat. If nothing is received 
from a given sender for this period, NetWeave 
shuts down the sender’s port and notifies all 
applications that broadcasts have terminated 
abnormally. 

INIT_INTERVAL 100 When a broadcaster starts, it sends a special 
message (the INIT message) to notify receivers 
that a new series of broadcast messages is about 
to start. 

The INIT_INTERVAL is the time (in milliseconds) 
that the broadcaster waits after sending the INIT 
message before it starts a new series of 
messages. To ensure that the INIT message is 
the very first message from a new broadcaster to 
arrive at a recipient, the INIT_INTERVAL should be 
two to three times larger than the throttle interval. 

NOTE: The UDP/IP protocol on which NetWeave’s 
resilient broadcast services are built does not 
guarantee that the messages will be received in 
the order in which they are sent. 

MAX_COUNTS_THRESHOLD 50 The minimum number of control messages that a 
broadcaster must receive from a given receiver 
within a data collection cycle to qualify the 
receiver for a listing on the statistics report. 

NetWeave collects statistics about control 
messages to help operators identify which 
receivers are experiencing problems. At the end 
of a collection cycle, a trace message indicates 
which receivers have sent more than this 
threshold number of control messages. 

MAX_CYCLES 5 The maximum number of recovery cycles allowed 
before a broadcaster exits from the recovery 
phase and resumes broadcasting where it left off. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 41 

Keyword Default Description 

MAX_THROTTLE_INTERVAL See 
Descrip-
tion 

The maximum time (in milliseconds) that a 
broadcaster will wait between sending broadcast 
messages.  

MAX_THROTTLE_INTERVAL, which is the inverse 
of the broadcast rate, determines the minimum 
rate for broadcasts. If you don’t specify a default, 
the system assigns a default value of four times 
THROTTLE_INTERVAL. 

READ_WINDOW_SIZE 30 To buffer receipt of datagrams and detect any that 
are missing or out of order, NetWeave creates 
one read window for each new broadcaster. 
READ_WINDOW_SIZE is the maximum number of 
IP datagrams the receiver holds in a read window. 

RECOVERY_INTERVAL 50 The maximum time (in milliseconds) a 
broadcaster waits for receivers to recover missed 
or out of order messages. 

RESEND_INDEX 4 Determines when to request an out of order 
datagram. The RESEND_INDEX marks how many 
subsequent messages a receiver reads before it 
generates a control message back to the 
broadcaster. 

RESEND_THRESHOLD 10 control 
messages 
per 
recovery 
cycle 

A receiver’s recovery message asks the 
broadcaster to resend a single missing datagram. 
If the number of recovery requests from any 
receiver reaches the RESEND_THRESHOLD during 
one phase of recovery, the broadcaster restarts 
from the earliest saved message. 

THROTTLE_ADJUST None The number of milliseconds that NetWeave adds 
to the throttle interval value after recovery cycle(s) 
have occurred. If you don’t set this parameter, 
throttling will not occur. 

THROTTLE_ADJUST_INTERVAL 1000 Controls large-scale adjustments to the rate of 
message transmission. This interval (specified in 
milliseconds) defines how often NetWeave checks 
for recovery cycles. If none have occurred during 
the last interval, the throttle interval (pause 
between broadcasts) is decreased by the amount 
specified in THROTTLE_ADJUST. If there have 
been recovery cycles, the interval is increased by 
the THROTTLE_ADJUST amount. 

THROTTLE_INTERVAL See 
Description 

The number of milliseconds a broadcaster waits 
between transmissions of individual IP datagrams. 

The default is 10 milliseconds, 100 datagrams per 
second. 

WRITE_RING_SIZE 30 The number of IP datagrams that the broadcaster 
can recall for recovery purposes, i.e., how many 
messages a broadcaster saves. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 42 

The following broadcast parameters control the direct interface between NetWeave and UDP/IP. These 
parameters (if present) are specified in each protocol group: 

Keyword Default Description 

UDP_BUFFER_SIZE The maximum number of bytes that may be sent 
or received in an IP datagram. 

MAX_SEND_SIZE The maximum number of bytes that can be sent in 
a single datagram. This value must not exceed 
UDP_BUFFER_SIZE. 

MAX_RECV_SIZE 

1024 

The maximum number of bytes that can be 
received in a single datagram. This value must 
not exceed UDP_BUFFER_SIZE. 

UDP_RECVFROM_ADDRESS The IP address from which the receiver reads 
broadcast messages. 

UDP_SENDTO_ADDRESS The IP address to which a broadcaster sends 
messages. 

UDP_BIND_ADDRESS The IP address to which broadcasters and 
receivers both bind. The recommended value is 
0.0.0.0. 

UDP_PORT 

None 

The port number (greater than 512) that 
NetWeave will use for sending and receiving 
broadcasts. 

TCPIP_PROCESS_NAME $ztc0 The Tandem parameter for the TCP/IP process 
that controls the LAN on which NetWeave will 
broadcast. 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 43 

Sample Files for Broadcasting 

The sample configuration on the next page shows the settings for the components illustrated in Figure 3 
below. 

 

Broadcaster 

NetWeave Library 

NetWeave 
INI file 

NetWeave 
Agent 

NetWeave 
INI file 

Reader 

NetWeave Library 

LAN 

NetWeave 
INI file 

NetWeave 
Agent 

NWDS_IPC_BROADCAST(MY_BROADCAST,  
     FILTER_CLASS) 

Connection made with 
AGENT_TCPIP in 
MY_BROADCAST 

Broadcast done with 
information from 
BCAST group and 
FILTER_CLASS 

NWDS_IPC_REGISTER(THEIR_BROADCASTS, 
    FILTER_CLASS) 

Connection made with 
AGENT_TCPIP in 
THEIR_BROADCASTS 

Broadcast received with 
information from BCAST 
group and FILTER_CLASS 

 

Figure 3. NetWeave's broadcast architecture 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 44 

Sender’s Sample INI File 

The INI file below contains configuration information for an application that generates broadcast 
messages. 

[BROADCASTER] 

@TRACE_FILE@=<valid file name> 

USER_NAME_GROUP=BROADCASTER _PRIVATE 

 

[BROADCASTER _PRIVATE] 

<application logical>=<value> 

 

[MY_BROADCAST] 

NAME=AGENT_TCPIP::BCAST 

 

[AGENT_TCPIP] 

PROTOCOL=TCPIP 

TCPIP_ADDRESS=<valid dotted address e.g. 190.130.7.15> 

TCPIP_PORT=<valid port number e.g. 7001> 

Broadcaster’s INI File 

The INI file below defines the broadcast parameters for the broadcaster, which is the NetWeave Agent 
that sends broadcast messages on behalf of the sender applications. 

[NW_SERVER] 

@TRACE_FILE@=<valid file name> 

PUBLIC_NAME={AGENT_TCPIP} 

 

[AGENT_TCPIP] 

PROTOCOL=TCPIP 

TCPIP_ADDRESS=<valid dotted address e.g. 190.130.7.15> 

TCPIP_PORT=<valid port number e.g. 7001> 

 

[TRACES] 

TRACE_LEVEL=ERRORS 

FILE_NAME=@TRACE_FILE@ 

 

[BCAST] 

LOCAL_PROCESS=1 

MAX_SEND_SIZE=1024 

MAX_RECV_SIZE=1024 

UDP_RECVFROM_ADDRESS=<valid dotted address e.g. 190.130.7.255> 

UDP_BIND_ADDRESS=0.0.0.0 

UDP_SENDTO_ADDRESS=<valid dotted address e.g. 190.130.7.255> 

UDP_BIND_PORT=<valid port number e.g. 14333> 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 45 

PROTOCOL=BROADCAST 

HEARTBEAT_INTERVAL=5000 

HEARTBEAT_TIMEOUT=15000 

RESEND_INDEX=4 

READ_WINDOW_SIZE=30 

WRITE_RING_SIZE=30 

XOFF_TIMEOUT=5000 

Reader’s INI File 

The INI file below applies to a client application that receives broadcast messages. 

[READER] 

@TRACE_FILE@=<valid file name> 

USER_NAME_GROUP=BROADCASTER _PRIVATE 

 

[READER_PRIVATE] 

<application logical>=<value> 

 

[THEIR_BROADCASTS] 

NAME=AGENT_TCPIP::BCAST 

 

[NW_SERVER] 

@TRACE_FILE@=<valid file name> 

PUBLIC_NAME={AGENT_TCPIP} 

 

[AGENT_TCPIP] 

PROTOCOL=TCPIP 

TCPIP_ADDRESS=<valid IP address of another computer, e.g. 190.130.7.30> 

TCPIP_PORT=<valid port number e.g. 7001> 

 

[TRACES] 

TRACE_LEVEL=ERRORS 

FILE_NAME=@TRACE_FILE@ 

 

[BCAST] 

LOCAL_PROCESS=1 

MAX_SEND_SIZE=1024 

MAX_RECV_SIZE=1024 

UDP_RECVFROM_ADDRESS=<valid dotted address e.g. 190.130.7.255> 

UDP_BIND_ADDRESS=0.0.0.0 

UDP_SENDTO_ADDRESS=<valid dotted address e.g. 190.130.7.255> 

UDP_BIND_PORT=<valid port number e.g. 14333.  NOTE: port numbers must match 

across systems.> 

PROTOCOL=BROADCAST 

HEARTBEAT_INTERVAL=5000 

HEARTBEAT_TIMEOUT=15000 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 46 

RESEND_INDEX=4 

READ_WINDOW_SIZE=30 

WRITE_RING_SIZE=30 

XOFF_TIMEOUT=5000 

DOLLAR_RECV Protocol (Tandem) 

This Tandem-specific protocol is used for the Guardian operating system on Compaq’s Himalaya 
architecture. Use DOLLAR_RECV protocol for conversations between a NetWeave Agent on Tandem 
and named server processes that are not controlled by Pathway. 

Because a client application on a remote computer cannot use DOLLAR_RECV protocol, it must use a 
NetWeave Agent on the Tandem as an intermediary protocol converter. The client application talks to 
the Agent over TCP/IP, and the Agent relays the messages over DOLLAR_RECV protocol to the 
Tandem server process. 

The server side uses the standard $receive mechanism for sending and receiving messages. The Agent 
uses DOLLAR_RECV protocol to talk to an existing Guardian process without modifying the server 
code. 

Keyword Default Description Group 

TANRECV_QUEUE_DEPTH 10 Initial number of messages that 
DOLLAR_RECV protocol can send and 
receive simultaneously. 

NWDS_MAX_RECEIVE_MSG 4096 Maximum length (in bytes) of a 
message that you can send or receive 
using this protocol. 

LEVEL4 

LOCAL_PROCESS=1 1 Required parameter for Guardian 
protocols. Do not change this value. 

TANRECV_PROCESS See 
Description 

The server’s Guardian process name. 

Protocol 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 47 

PATHSEND Protocol (Tandem) 

This Tandem-specific protocol is used by an Agent to communicate with Pathway serverclasses. 
PATHSEND protocol provides a good way to interface with existing Pathway serverclasses without 
having to modify their code. 

Keyword Default Description Group 

PATHSEND_QUEUE_DEPTH 10 The initial number of messages that 
PATHSEND protocol can send and receive 
simultaneously. 

NWDS_MAX_RECEIVE_MSG 4096 Maximum length (in bytes) of a message 
that you can send or receive using this 
protocol. 

LEVEL4 

PATHSEND_PERSISTENT 1 Optional. The default behavior (if you don’t 
specify a PATHSEND_PERSISTENT value) 
is for a serverclass to stop when there are 
no more clients connected to it.  

If you do specify a 
PATHSEND_PERSISTENT value, when the 
last client disconnects from the 
serverclass, NetWeave returns the error 
condition LEVEL2_SHUTDOWN. The 
application decides whether and how to 
exit. 

LOCAL_PROCESS 1 Required parameter for Guardian 
protocols. Do not change this value. 

PATHWAY_MONITOR See 
Descrip-
tion 

The full Guardian process name of the 
Pathway monitor where the serverclass is 
defined. 

PATHWAY_SERVERCLASS See 
Descrip-
tion 

The name of the serverclass. 

Protocol 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 48 

QACCESS Protocol (IBM/CICS) 

In the IBM/CICS environment, NetWeave uses QACCESS protocol for interprocess communications 
(IPC). QACCESS may use either temporary storage queues (TSQs) or transient data queues (TDQs). 
The host application specifies which type of queue to use for a particular IPC task. This section explains 
how to choose the appropriate queue for IPC in the CICS environment. 

TDQs use so-called destructive reads: each message is removed from the queue as it is read. TDQs must 
be pre-allocated, and are implemented on a disk file. Each logical I/O requires two disk I/Os (one to 
enqueue a message and another to dequeue it). TDQs are very static; to add or remove a TDQ, you must 
change the configuration of the CICS region. 

In contrast, TSQ reads are not destructive, so the whole queue must be purged to delete the records. 
Because TSQs reside in memory and not on a disk, you can create and destroy them without affecting 
the configuration of the CICS region. Use of TSQs by QACCESS is highly dynamic. When QACCESS 
uses a TSQ to return a reply to a process, the response queue contains only one message and can be 
safely purged after being read. QACCESS uses the standard CICS ENQ/DEQ facility (a semaphore) to 
protect a TSQ while it is being drained and purged. 

TSQs have two forms: 

• QACCESS: the normal, dynamic form that requires no configuration parameters. 

• NONE: the older, raw form, which expects all configuration information to be in the INI file. A 
raw TSQ has one configuration for the program that sends a message and another for the 
program that reads it. For the sender, the raw TSQ is a writeq. For the receiver, it is a readq. 

Every program that uses NetWeave queues has a single, unique ECA (CICS Timer-Event Control Area) 
to tell it when a new message appears in one of its queues. The ECA is created on the EXEC CICS 
POST call. A task waits for a new message by suspending operation on this ECA with the EXEC CICS 
WAIT EVENT call. Another task may wake up the suspended task with the EXEC CICS CANCEL call. 
These CICS calls (POST & WAIT EVENT) allow NetWeave to wait for a message efficiently and to 
wake up a task after sending it a message (CANCEL). 

NOTE: In an older version of QACCESS protocol, a TSQ was called a Temporary Storage Area, 
abbreviated TSA. You may occasionally encounter this term, but for our purposes TSA means 
TSQ. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 49 

QACCESS requires the following INI file parameters: 

Keyword Description Group 

ECA_NAME The ECA to cancel after writing a message 
on the input queue. There is no default. 

WAIT_EVENT 

L2QA_QUEUE_DEPTH 
(default=10) 

The number of buffers to preallocate to 
hold messages within module 
l2_qaccess.c 

L2QA_BUFFER_SIZE 
(default=maximum) 

The maximum is QIO_BUFFER_SIZE - 1. 

QIO_QUEUE_DEPTH 
(default=10) 

The number of buffers you want to 
preallocate for holding messages within 
module cics_qio.c 

QIO_BUFFER_SIZE Default=maximum=(32763 - 28) 

LEVEL2 

MAX_SEND_SIZE Default=maximum=L2QA_BUFFER_SIZE 

SOCKET_NAME Required. The logical name for this queue, 
up to 40 characters. There is no default. 

SOCKET_PROTOCOL NONE or QACCESS 

SOCKET_READQ_TYPE TDQ or TSA 

SOCKET_READQ_NAME The actual queue name. 

SOCKET_READQ_SEMA The semaphore associated with the read 
queue (required for TSA). 

SOCKET_WRITEQ_ID_IN_BUFFER 
(default=0) 

0=false; 1=true 
For dynamic queues, this parameter must 
be set to true. 

SOCKET_WRITEQ_TYPE TDQ or TSA 

SOCKET_WRITEQ_NAME The actual queue name. 

SOCKET_WRITEQ_ECA The ECA associated with the write queue 
(required for TSA). 

SOCKET_WRITEQ_SEMA The semaphore associated with the write 
queue (required for TSA). 

Protocol 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 50 

Dual-Rail Routing 

NetWeave has a fault-tolerant routing methodology known as dual-rail that allows IPC messaging to be 
distributed over redundant links between applications. Dual-rail routing operates over both TCP/IP and 
UDP/IP. 

Transparent to both sending and receiving applications, messages are simultaneously transmitted over 
redundant links (dual rails). The NetWeave receiver accepts the first message received and passes it to 
the application, while the duplicate message received over the alternate channel is silently discarded. If 
one network link is broken, NetWeave periodically tries to recover the link while continuing to transmit 
messages over the single remaining link. When the broken link is successfully recovered, message 
traffic resumes over both channels. 

Although dual-rail can be considered a protocol for communications stack purposes, it differs from 
other protocols in that it appears to be "above" TCP/IP or UDP/IP. To configure a connection for dual-
rail, set the connection's protocol as follows: 

PROTOCOL=DUAL_RAIL 

After setting the protocol type, you must include the individual rail definitions in the same group where 
dual-rail is defined. Each rail (connection) points to another group in the INI file that contains the 
protocol details for that rail. 

RAIL_1_NAME=first protocol group 

RAIL_2_NAME=second protocol group 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 51 

Miscellaneous Configuration Issues 

Compatibility With Older Versions of NetWeave 

To communicate with another program built with NetWeave version older than 1.5.7, a newer program 
must set all of its communications to match the older version’s settings. To enable a newer NetWeave 
release to work properly with these old versions, do the following: 

To communicate with…. Add the following to the newer NetWeave’s INI file 

Version 1.5.2 or older [RPC_CLIENT] 

502_ITEM_LIST=1 

Versions 1.5.3 through 1.5.6 [RPC_CLIENT] 

506_ITEM_LIST=1 

To communicate with another program built with NetWeave versions between 1.5.7 and 1.6.x, add the 
following to the Protocol group: 

USE_V5=1 

For all NetWeave versions after 1.7, two programs exchange information during connection setup to 
negotiate parameters that control their communications. 

SQL Server for Tandem 

To improve reliability and scalability of applications that access SQL databases on Tandem computers, 
NetWeave provides some additional features. If you want to use one logical name to represent multiple 
NonStopSQL servers, use the CLASS parameter to identify the collection of servers. (This feature is 
similar to the Load Balancing feature described on page 15.) 

The example below identifies a static pool of two SQL servers, NS1 and NS2. The Agent uses 
NetWeave’s DOLLAR_RECV protocol to communicate with these processes named $NS1 and $NS2 
respectively. 

[SQLCONNECT] 

CLASS={ NS1, NS2 } 

 

[NS1] 

LOCAL_PROTOCOL=1 

PROTOCOL=DOLLAR_RECV 

TANRECV_PROCESS=$NS1 

@TRACE_FILE@=$S.#NS1 

 

[NS2] 

LOCAL_PROTOCOL=1 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 52 

PROTOCOL=DOLLAR_RECV 

TANRECV_PROCESS=$NS2 

@TRACE_FILE@=$S.#NS2 

The NetWeave Dispatcher 

A Dispatcher is a special type of server for operating systems that support threads. You can create a 
Dispatcher on Windows NT or on UNIX.  

A Dispatcher must have a unique internal, external, and control publish name. To make a program into a 
Dispatcher, you must add three groups, similar to the ones shown below, to its INI file. You may name 

these groups anything you like. The API for nwds_dispatcher_create(...) accepts these three 
names and defines their roles. 

[INTERNAL] 

PROTOCOL=TCPIP 

TCPIP_ADDRESS=127.0.0.1 

TCPIP_PORT=3102 

 

[EXTERNAL] 

PROTOCOL=TCPIP 

TCPIP_ADDRESS=127.0.0.1 

TCPIP_PORT=3103 

 

[CONTROL] 

PROTOCOL=TCPIP 

TCPIP_ADDRESS=127.0.0.1 

TCPIP_PORT=3104 

The [Blocking] Group 

NWDS file I/O allows more than one record in a file to be read or written during one API call. (For 
more information about this capability, called record blocking, see the functions beginning with 

nwds_file_ in the NetWeave API Guide.) NetWeave item lists and special configuration parameters 
determine how record blocking works. To read or write several records in a file simultaneously, use 

nwds_file_open with the item NWDS_FILE_BLOCKING set to NWDS_FILE_BLOCKING_ON. 

The [BLOCKING] group defines two parameters that control how records are stored in blocks: 

Keyword Default Description 

BLOCK_TERMINATOR Carriage Return, 
ASCII value 10 

Delimits records in a block. 

BLOCK_SIZE 32567 The number of bytes to hold multiple records. The 
default value is the maximum value allowed. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 53 

The [FILE_COPY] Group 

The function nwds_file_copy sends more than one record at a time to the destination system. The 

[FILE_COPY] group controls the size of the buffer that NetWeave allocates for holding multiple 

records. Use BUFFER_SIZE (default=32567) to specify the buffer size for file transfers. 

The [RPC_CLIENT] Group 

NetWeave sends the parameters and values for each API from the client system to the server for 

execution. The [RPC_CLIENT] group controls how this information is sent. 

Keyword Default Description 

QUEUE_DEPTH 10 The number of simultaneous messages to process. 

BUFFER_SIZE 32767 The maximum message size handled by this 
module. 

502_ITEM_LIST 1 Backward compatibility to NetWeave version 
1.05.02. 

506_ITEM_LIST 1 Backward compatibility to NetWeave versions 
1.05.03 through 1.05.06. 

The [RPC_SERVER] Group 

The [RPC_SERVER] group is a special group for the NetWeave Agent. It has two parameters, 

QUEUE_DEPTH and BUFFER_SIZE, which have the same roles as RPC_CLIENT. 

The [LEVEL4] Group 

This group controls the efficient delivery of messages. Its QUEUE_DEPTH parameter is similar to 

RPC_CLIENT. For larger messages, increase the value of NWDS_MAX_RECEIVE_MSG (the 
maximum is 32K less 200 bytes of NetWeave overhead). 

Parameter Default Description 

QUEUE_DEPTH 10 The number of simultaneous messages to process. 

ENCRYPTION_REQUIRED 0 Indicates whether encryption is required.  
If yes, set ENCRYPTION_REQUIRED=1. 

PATHSEND_QUEUE_DEPTH 
(Tandem only) 

10 The number of Pathway messages to process 
simultaneously. 

NWDS_MAX_RECEIVE_MSG 
(Tandem only) 

4096 The maximum message size (in bytes) for Guardian 
I/O. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 54 

The [NWDS_QUEUE_CONTROL] Group 

This group contains settings for NetWeave's internal memory queues. Do not override the default 
settings without consulting NetWeave's technical staff. 

Keyword Default Description 

QUEUE_PADDING 5 Controls the minimum number of elements in a free 
queue. 

QUEUE_INCREMENT 10 Changes the default increment. 

QUEUE_DECREMENT 10 Changes the default decrement. 

QUEUE_MODULO 10 Controls how often queue increases/decreases are 
logged. 

QUEUE_CHECK 0 Controls queue verification, usually set to false (0). 

Setting the File Type 

Normally, the NetWeave item lists control how the API accesses a file. You may set the NetWeave file 
type parameter in the group that describes the file, and omit it from the item list. 

File type Parameter Description 

C streams C_FILE=1 Indicates that this is a C File. 

FIFO FIFO_FILE=1 Indicates that this is a FIFO file.  



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 55 

Hierarchy of INI Files 

An initialization (INI) file is a configuration file that a NetWeave application or NetWeave Agent reads 

at startup. The call to nwds_init tells NetWeave which INI file and root group to use. If several 
programs use the same INI file, you should set up and select a different root (start) group in that INI file 
for each application. 

To organize configuration information that is shared by several applications, you can create a hierarchy 
or chain of INI files, one file linked to the next. The lowest level in the hierarchy is the INI file declared 

by each application when it calls nwds_init. The more broadly applicable the information, the higher 

in the INI file hierarchy it should reside. If an INI file contains a link to another INI file, this link (the 
destination INI filename enclosed in curly braces) appears as the last entry of the application’s root 
group.  

In the example below, an application has a start group [START1] that defines its error log and then 

points to a higher level INI file called common.ini that contains all other configuration information. 

[START1] 

TRACE_FILE=/usr/nwds/start1.err 

{common.ini} 

To translate an alias, NetWeave begins by looking in the root INI file. If it doesn’t find the alias, but 
finds a link to another INI file, NetWeave continues to search the next INI file, and the next, until it 
either finds and translates the alias, or it runs out of INI files to search. If NetWeave can’t find an alias, 
the translation fails and the NetWeave Agent that called Naming Services returns an error to indicate 
that the alias could not be found. 

Figure 4 shows how two INI files can hold configuration data. The lower level INI file contains 
configuration information for a single program. The higher level INI file contains global references, 
such as the identification and routing information for all servers, that are the same for programs and 
communications protocols within a project. 

NOTE: A hierarchy of INI files is optional, and you may well decide to put all configuration 
information into one INI file. However, the advantage of hierarchical INI files is that they are 
much easier to maintain because the global information occurs in just one place, the higher level 
INI file. 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 56 

Application

NetWeave
Local INI

Higher
Level INI

 

Figure 4. A hierarchy of INI files 

The INI file hierarchy may contain both static and dynamic INI files. With dynamic INI files (added in 
release 2.0) you can add or change certain types of configuration information while a process is running, 
and NetWeave will incorporate the changes the next time the application checks for this configuration 
information. 

Dynamic INI Files 

Dynamic INI files are an optional way to expand the traditional means of accessing configuration 
information. (If you don’t want to use dynamic INI files, you can configure NetWeave so that your 
programs continue to access all information from static configuration files.) 

INI Server is a NetWeave process that must be started before the NetWeave Agent and before any other 
processes that will access configuration information dynamically. INI Server has its own static INI file 
that contains the information required to run INI Server, such as the list of INI files from which INI 
Server extracts configuration information. 

In addition, each NetWeave application also needs an INI file called the Bootstrap INI (or Boot INI) that 
contains the information that describes how to connect to INI Server. All configuration information in 

a Boot INI is static. 

The INI Manager process is a standalone console program that you can use to send commands to an INI 
Server. For example, after modifying one of the INI files, you can use INI Manager to instruct INI 
Server to reload the configuration file. 

Inside the NetWeave library and in the NetWeave Agent, the functions that retrieve configuration 
information are synchronous blocking calls. In versions before 2.0, the NetWeave library read the 
configuration information from the INI file when the application started, and there was no penalty to 
access this static configuration information using synchronous functions. However, when you use 
dynamic INI files, an application may be blocked while it retrieves information from INI Server. For 
example, when you instruct INI Manager to reload an INI file, it may not respond to a program's request 
for information within a reasonably short period of time. The number of groups in the file and the 
relationships between them determine how long it takes INI Manager to reload and reprocess the 
configuration information. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 57 

To minimize the impact of reloading on other programs, INI Manager reads part of the new information 
and then stops to check if another program is requesting configuration information. None of the new 
information is made available until all modified information is reloaded. 

Use the following NetWeave parameters to manage INI Manager’s response rate to another program's 
request: 

Keyword Description 

MAX_AMOUNT_PER_READ Specifies how many bytes INI Manager reads during one 
reload cycle. 

LOAD_PAUSE_MILLISEC Specifies how long (in milliseconds) INI Manager waits for a 
program request before continuing to reload information. 

Starting INI Server 

INI Server is a command line application that requires three parameters: 

• The name of INI Server's own INI file 

• The start group in this INI file 

• The name by which this INI Server will be known to the other applications 

For example: 

iniserv INI.INI START INI_SERVER 

A Sample INI File for INI Server 

INI Server’s start group must contain a USER_NAME_GROUP that points to the other INI files that INI 

Server must load at runtime. You can call the USER_NAME_GROUP whatever you want (in the example 

below, we call it SERVER_PARAMS), but it must contain the parameter FILE_COUNT and a list of files 
for INI Server to load. 

FILE_COUNT must be at least 1 and may be as large as needed. If FILE_COUNT is n, there must also 

be “n” entries called FILE_1, FILE_2,..., FILE_N to specify the logical names of the various INI 
files that INI Server will load when its starts. Normally, in a separate list you also supply a physical path 

and filename to map to each logical name. This map may contain more names than FILE_COUNT.  

Later on, you can use INI Manager to instruct INI Server to load configuration information from one or 
more of these additional files. When INI Server starts, it will load all of the mapping information even 

though a particular file may not appear in the FILE_COUNT list. Remember, for each logical name that 
you want INI Server to load at startup, you have to specify the full path and filename in INI Server's 
Boot INI file. 

; The INI file's start group. 

[START] 

@TRACE_FILE@=/usr/ini.err 

USER_NAME_GROUP=SERVER_PARAMS 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 58 

[SERVER_PARAMS] 

;INI files to load when server starts. Specify logical file name. 

FILE_COUNT=2 

FILE_1=INI_COMMON_1 

FILE_2=INI_COMMON_2 

; 

;list of supported INI files (logical INI file name to physical name 

mapping). 

INI_COMMON_1  =/usr/common.ini 

INI_COMMON_2  =/tmp/common.ini 

; 

;optional number of milliseconds to wait during INI file load when max read 

occurs. 

;default is 100 milliseconds. 

LOAD_PAUSE_MILLISEC=200 

;optional amount of bytes to read from INI file before pausing. Default is 

24000. 

MAX_AMOUNT_PER_READ=4000 

 

;server's publish group; this name must match the third item in the startup 

parameters. 

[INI_SERVER] 

LOCAL_PROCESS=0 

PROTOCOL     =TCPIP 

TCPIP_ADDRESS=127.0.0.1 

TCPIP_PORT   =11111 

 

* 

* Well Known NetWeave Groups 

* 

 

[TRACES] 

TRACE_LEVEL=ERRORS 

MSGLOG_LEVEL=INFO 

FILE_NAME=@TRACE_FILE@ 

A Sample Boot INI for an Application 

When an application starts, it reads the parameters in its Boot INI file. Most Boot INI file parameters are 
static and cannot be changed while the program is running. To maximize the flexibility of your dynamic 
INI files, keep as little information as possible in the Boot INI files. 

If you do want to use dynamic configurations, make sure that an application's Boot INI file includes the 

group [DYNAMIC_INI]. This group must specify the item LOGICAL_INI_NAME that represents the 

lowest INI file in the hierarchy of dynamic INI files. LOGICAL_INI_NAME must match one of the 
logical names in INI Server's Boot INI. 

In addition to logical names, the [DYNAMIC_INI] group may specify how long the application should 
continue to use the current configuration information before checking with INI Server for updates. To 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 59 

help manage the overhead of looking up dynamic information, use GROUP_EXPIRE_PERIOD 
(measured in seconds) to specify how long the INI file group information remains in effect after it is 

updated from INI Server. The larger the GROUP_EXPIRE_PERIOD, the less often the application 
contacts INI Server to refresh stale information. The default is five minutes. 

An application normally requests new information from INI Server when: 

• The application does not have the information it needs in its Boot INI file. 

• The information is stale (it is older than GROUP_EXPIRE_PERIOD). 

For each program, the program designer must assess how best to balance the tradeoffs between 
infrequent checks that minimize the overhead of dynamic information, and frequent checks that increase 
the flexibility and responsiveness of the application to changes to its environment. 

[START_HERE] 

@TRACE_FILE@=/tmp/netweave.err 

 

[DYNAMIC_INI] 

;optional delay before retrying to connect to the INI Server; default 5 

seconds 

CONNECT_RETRY_PERIOD=10 

;optional group expire period; default 300 seconds. 

GROUP_EXPIRE_PERIOD=600 

;required logical INI file name 

LOGICAL_INI_NAME=INI_COMMON 

;optional start group name; default is same start group used for bootstrap 

file 

START_GROUP=START 

;optional INI server connectivity group; default is the group name 

INI_SERVER 

INI_SERVER_GROUP=INI_SERVER 

 

[INI_SERVER] 

LOCAL_PROCESS=0 

PROTOCOL     =TCPIP 

TCPIP_ADDRESS=127.0.0.1 

TCPIP_PORT   =11111 

* 

* Well Known NetWeave Groups 

* 

 

[TRACES] 

TRACE_LEVEL=ERRORS 

FILE_NAME=@TRACE_FILE@ 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 60 

A Sample Common INI File 

A common INI file does not contain any required groups or parameters. Normally, this file contains a 

group whose name is specified by the START_GROUP parameter in the Boot INI file’s 

[DYNAMIC_INI] group. In the example below, this group is shown as an empty placeholder called 

[START]. To use chained INI files, you must have a start group that contains the reference to the next 
link in the chain. Chains of INI files are discussed in more detail on page 62. 

[START] 

* 

* Local agent 

* 

[TANDEM] 

LOCAL_PROCESS=0 

PROTOCOL     =TCPIP 

TCPIP_ADDRESS=localhost 

TCPIP_PORT   =18475 

 

* 

* Logical Filenames 

* 

[FIFO0] 

NAME=TANDEM::FIFO0 

[FIFO1] 

NAME=TANDEM::FIFO1 

 

* 

* Load Balancing 

* 

[SERVICE_A] 

NAME={S1,S2} 

 

[S1] 

LOCAL_PROCESS=0 

PROTOCOL     =TCPIP 

TCPIP_ADDRESS=TANDEM1 

TCPIP_PORT   =4001 

 

[S2] 

LOCAL_PROCESS=0 

PROTOCOL     =TCPIP 

TCPIP_ADDRESS=TANDEM2 

TCPIP_PORT   =4001 

 

* 

* Other agents and processes 

* 

[HP1] 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 61 

LOCAL_PROCESS=0 

PROTOCOL     =TCPIP 

TCPIP_ADDRESS=HP1 

TCPIP_PORT   =18475 

Runtime Parameters That You Can Change 

Any NetWeave application has the following three parameters that are set a runtime: 

• TRACE_LEVEL (in the [TRACES] group) 

• MSGLOG_LEVEL (in the [TRACES] group) 

• QUEUE_CHECK (in the [NWDS_QUEUE_CONTROL] group) 

These parameters are normally static and are specified only in the Boot INI file. However, if a 

[TRACES] group is defined in a dynamic INI file loaded in INI Server, you can change the trace level 
from ERRORS to FULL or back without stopping the application. You can also change the level of 

message logging that your application performs, or enable QUEUE_CHECK if NetWeave support staff 
requests it. 

When Changes Take Effect 

INI Server loads its files at startup and reloads them only when instructed to via the INI Manager, as 
described on page 65. You may make any number of changes to one or more INI files, but until INI 
Server is instructed to reload them, these changes cannot affect any applications. Even if INI Server has 
reloaded a changed value, that value will not become known to an application until the application 
makes a configuration request to INI Server, typically for one of the following reasons: 

• The application makes a new IPC connection (by calling nwds_ipc_publish or 

nwds_ipc_connect). 

• It opens a file or NetWeave FIFO. 

• It registers for something using nwds_ipc_register, nwds_trigger_register, 

etc.). 

As noted above, the setting you choose for GROUP_EXPIRE_PERIOD in the [DYNAMIC_INI] group 

controls how often an application returns to INI Server to check for configuration updates. However, 
these changes are implemented only if: 

• You instruct INI Server to reload the (logical) INI file you have changed. 

• Your application queries INI Server for updates for stale configuration information. 

NOTE: An application never needs to request updates to the runtime parameters TRACE_LEVEL, 

MSGLOG_LEVEL, and QUEUE_CHECK. Changes to these parameters are delivered automatically 
as soon as an application queries INI Server for any updates to any group. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 62 

Chains of INI Files 

Before INI Server was added to NetWeave, chains of INI files were the only way to aggregate common 
information used by many applications. When INI Server was introduced, the rules for chaining 
changed. However, if you do not use INI Server, chaining still works the way it always has. The old 
chaining rules also still apply to files that are linked to the Boot INI files. For these files, to link one INI 

file to another, the Boot INI’s [START] group must include the name of the next file that INI Server 
consults for configuration information. 

For example, assume an INI file named /tmp/link1.ini has the following start group: 

[START_HERE] 

{/tmp/link2.ini} 

NetWeave loads the groups from link2.ini with the groups found in link1.ini. To add another 

INI file (/tmp/link3.ini) to this chain of INI files, the start group in /tmp/link2.ini must 
look like this: 

[START_HERE] 

{/tmp/link3.ini} 

If two chained INI files contain a group with the same name, the parameter values in the earliest 
declaration in the chain take precedence over the later declaration. NetWeave traces along the chain of 
INI files for the first group that matches a program's request. 

Chains of INI files within INI Server differ from the traditional chains only in that names of linked INI 
files must be logical INI filenames rather than explicit physical filenames. Where a Boot INI links to 

/tmp/link2.ini by physical filename, a common INI file will use a logical name known to INI 
Server. Because more than one chain may be defined to link common INI files, use names such as 

[CHAIN_1] and [CHAIN_2] for the start groups in the links of the distinct chains of INI files. 

Chained File Example 

In the example below, two chains are defined to link two different INI files to a third, common INI file. 

INI Server's Boot INI file contains a USER_NAME_GROUP called [SERVER_PARAMS] that defines 
the logical INI files and their mappings to actual files. Only two of the files known to INI Server are 

explicitly loaded. However, because INI_COMMON is in at least one chain, it is loaded as well. 

[SERVER_PARAMS] 

FILE_COUNT=2 

FILE_1=INI_CHAIN_1 

FILE_2=INI_CHAIN_2 

; map of each logical INI filename to a physical file 

INI_CHAIN_1=/tmp/netweave/chain1.ini 

INI_CHAIN_2=/tmp/netweave/chain2.ini 

COMMON_INI=/usr/common.ini 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 63 

The first INI file in chain 1, INI_CHAIN_1, has as its start group [CHAIN1]: 

[CHAIN_1] 

{COMMON_INI} 

And the second chain starts in INI file INI_CHAIN_2 with start group [CHAIN2]: 

[CHAIN_2] 

{COMMON_INI} 

The common INI file needs start groups for [CHAIN1] and [CHAIN2] only if the chains extend 

beyond the COMMON_INI file. If these groups exist in the common INI file, both may be empty; or they 
may contain additional references to logical INI files. In this simple example, the first chain contains all 

the groups in INI_CHAIN_1 and COMMON_INI. The second chain contains all groups from 

INI_CHAIN_2 and COMMON_INI. 

To increase flexibility, you can also consider combining several of the ideas presented above. For 

example, you can put a [TRACES] group and a [NWDS_QUEUE_CONTROL] group in the initial INI 
file in a chain of INI files, and put the server names and FIFOs in the INI files at or near the end of the 
chain. Then, you can alter the runtime parameters for applications in one chain of INI files without 

affecting applications linked by another chain. In the sample code shown above, if the [TRACES] 

group is defined in INI_CHAIN_1, you can change the tracing or message logging levels for 

applications that use the start group [CHAIN1] without affecting levels in applications that start with 

[CHAIN2]. 

CAUTION: If you define a [TRACES] group or [NWDS_QUEUE_CONTROL] group in a Boot 

INI file and include one or both of these groups in the dynamic INI file that INI Server loaded, 
INI Server will override your Boot INI values with the values it finds in the dynamic INI file. 
Therefore, you should place these special groups in at least one of the logical INI files that INI 
Server loads, and link this INI file to other common INI files. Do not put the special groups 

directly in the Boot INI file. Instead, set the LOGICAL_INI_NAME to one of the INI files that 
contains them. 

Chained Files and Load Balancing 

Place any declarations for load balancing in INI files at or near the beginning of a chain of INI files, and 
put the names of all servers mentioned in any declaration of load balancing into an INI file near or at the 
end of the chain. If some of the servers are located on LANs that are physically closer or faster, 
duplicate their names in the list of servers to increase the probability that they will be selected. 

For example, two departments might define chains of INI files that allow mutual sharing of their 

servers. The first department defines a chain that has a declaration of load balancing for SERVICE_A 

that favors use of server applications reached through its NetWeave Agent, DEPT1_SERVER. The 

second department defines its load balancing to prefer servers on DEPT2_SERVER. The common INI 
file defines the protocol groups for all the departmental Agents and server applications. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 64 

For the example below, assume that we use the chains from the previous example and add one more 

logical INI file named INI_S1. This file is accessed by the Agent and the server S1 located on the file 

server in the first department (department 1). Assume, too, that INI_CHAIN_1 contains the following: 

[SERVICE_A] 

NAME={S1, S1, S2} 

and INI_CHAIN_2 contains: 

[SERVICE_A] 

NAME={S1, S2, S2} 

and COMMON_INI contains the definitions for S1, S2, and the Agent in department 1: 

[S1] 

NAME=DEPT1_SERVER::S1 

 

[S2] 

PROTOCOL=..... 

 

[DEPT1_SERVER] 

PROTOCOL=..... 

and the Agent in department 1 contains the beginning of another chain in its Boot INI file: 

[NW_SERVER] 

PUBLIC_NAME={DEPT1_SERVER} 

{INI_S1} 

 

[DEPT1_SERVER] 

PROTOCOL=..... 

and finally, INI_S1 contains: 

[S1] 

PROTOCOL=.... 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 65 

INI Management 
Interface 

INI 
Server New INI Files 

The Dynamic INI Management Interface 

In normal operation, INI Server is started before any other NetWeave components and continues to run 
unattended as long as applications continue to use it. For NetWeave release 2.0, INI Manager is a simple 
command-line application that performs a limited number of housekeeping tasks that affect INI Server. 

INI Manager’s primary function is to notify INI Server when one of its common, dynamic INI files has 
changed. Most of the other functions support this basic function. 

 

Figure 5. The role of INI Manager 

Starting INI Manager 

INI Manager is a command line application that has two runtime parameters: its Boot INI file and its 

[START] group. This information is passed from the command line to nwds_init using the 
following syntax: 

inimgmt <INI file> <INI group> 

Because INI Manager may send commands to any INI Server in the network, the Manager's Boot INI 
usually contains entries for all INI Servers. 

CAUTION: Although INI Manager may use dynamic INI files, be very careful when you send 
commands to the INI Server from which INI Manager receives its configuration information. 

Example 1 

Please note that in the following two examples, user input is shown in bold. 

When the Manager starts, it prompts for the INI Server to which it connects. In this example we are 

connecting to the INI Server defined by the group [INI_SERVER]: 

Only enter the first letter of a command 

Enter Dynamic INI Server Connection Group or <E>xit: INI_SERVER 

connecting to server (INI_SERVER) 

After connecting to INI Server, INI Manager prompts for commands until you exit. In this example, we 
are selecting the Help command to remind ourselves what each function does. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 66 

 

Enter: 

 <L>oad File, <S>hutdown, <D>isconnect, 

 <F>ile Select, <G>roup Fetch, <E>xit, <H>elp: H 

Enter first letter of the command: 

L - For Server to load/reload an INI file 

S - To Shutdown the Dynamic INI Server 

D - To disconnect from the Dynamic INI Server 

F - Select INI File and Start Group for Group Fetch 

G - Fetch group contents from selected INI File 

E - To exit this program 

The most commonly used function is Load File. In this example, we tell INI Server to reload 

INI_COMMON_1: 

Enter: 

 <L>oad File, <S>hutdown, <D>isconnect, 

 <F>ile Select, <G>roup Fetch, <E>xit, <H>elp: L 

File Select. Select Logical INI File: 

1   INI_COMMON_1=/usr/netweave/common1.ini 

2   INI_COMMON_2=/usr/netweave/common2.ini 

3   INI_COMMON_3=/usr/netweave/common3.ini 

Enter A Number or Logical Name: 1 

INI File Load Successfully Issued. 

Example 2 

The functions File Select and Group Fetch display the information that INI Server is sending to 
applications. In this example from the Tandem, we view the current interpretation of the logical name 

FIFO0 taken from the file INI_COMMON. Note that INI Manager input is not case-sensitive. 

Enter: 

 <L>oad File, <S>hutdown, <D>isconnect, 

 <F>ile Select, <G>roup Fetch, <E>xit, <H>elp: F 

File Select. Select Logical INI File: 

1   INI_COMMON=$lib15.mf200.comnini 

Enter A Number: 1 

File Select. Enter Start Group: start 

INI File Select Successfully Issued 

 

Enter: 

 <L>oad File, <S>hutdown, <D>isconnect, 

 <F>ile Select, <G>roup Fetch, <E>xit, <H>elp: g 

Fetch Group. Enter Group Name: fifo0 

Fetch Group Successful. Group data: 

********start******* 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 67 

LOAD TIME=34 14:54 

 

QUEUE_CHECK=1 

TRACE_LEVEL=ERRORS 

MSGLOG_LEVEL=TRACE 

  

[FIFO0] 

NAME=TANDEM::FIFO0 

********end********* 

The Load Time is the Julian day, hour and minute when the INI file called INI_COMMON was loaded in 
INI Server. Next, the display of group data shows the current values of the alterable runtime variables. 
Finally, the group name and contents are listed. 

To break the connection to INI Server gracefully, use the command Disconnect. (Using the Exit 
command severs the connection automatically.) When you disconnect from one INI Server, you will be 
prompted to either exit or connect to another INI Server. There is no separate command for connecting 
to an INI Server. 

NOTE: Please be careful when using the Shutdown command, because this shuts down all links 
between INI Server and applications that are attached to it. 

 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 68 

Message and Error Logging Considerations 

There are three ways to control the level and type of message logging from NetWeave components and 
applications:  

• Basic error tracing 

• Application message logging 

• Platform-specific logging 

Generally, in researching a connectivity problem, the more information you have the better. However, 
having maximum logging on all the time is very expensive in terms of disk space and performance. 

Basic Error Tracing 

The NetWeave Tracing feature, described on page 8, includes the following basic components 

configured within the [TRACES] group: 

• A filename for log output (TRACE_FILE). 

• The level of output information (TRACE_LEVEL) you want to include in the log. 

• A parameter for maintaining a reusable cache of detailed information (TRACE_SAVE) that is 

included in the log file when an error occurs. Use the SAVE_LINE_COUNT parameter to 
specify how many lines should be stored in this cache. 

Typically, each application running on a platform will generate traces to its own log file, although it is 
possible – but confusing – to generate all of the traces to a common file. You can specify a 

TRACE_FILE value for each application using either unique INI files, or (a better solution) using a 

macro substitution such as @TRACE_FILE@ to differentiate the trace file name through different root 
group definitions. 

For threaded platforms, output from each thread is identified in the log, but the trace settings apply to all 
threads in the process. The thread number, enclosed in parentheses, is shown in the log file after the INI 
file name.  

With the release of NetWeave 1.7, all messages related to a particular event (usually an error) are 
presented in an error “basket” to help identify the problem. A basket usually consists of several lines 
plus a single banner line that identifies the date/time, INI file, thread number (if applicable), and 
severity of the event. 

NOTE: To preserve the serial nature of the information in the log file, error basketing is disabled 

when TRACE_LEVEL is set to anything other than ERRORS. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 69 

Application Message Logging 

NetWeave applications can use the nwds_msglog function to write application-specific information 

to the NetWeave message log. For more information about nwds_msglog, see the NetWeave API 

Guide. 

As noted above in section Message Log Facility, the NetWeave [TRACES] group contains the 

following optional parameters that applications may use with nwds_msglog calls: 

Keyword Description 

MSGLOG_LEVEL Determines the level of information that appears in the log file for 
nwds_msglog calls. For example, if MSGLOG_LEVEL is set to 
ERROR, calls to nwds_msglog with severity NWDS_MLSTRACE are 
not included in the log file. 

MSGLOG_ID Provides another way to identify applications in the MVS/CICS 
platform-specific logging facility (see below). 

TRACE_APPL_FLUSH 
(default=0) 

Use this parameter to integrate application-level messages in the 
NetWeave error baskets in the log file. If TRACE_APPL_FLUSH=0 (or 
not specified), user messages and error baskets will appear as 
independent messages. 

NOTE: If TRACE_APPL_FLUSH=1, and if the application does not call 
nwds_msglog when an error code is returned to NetWeave, no error 
information at all is written to the log. Therefore, when you 
investigate a problem that does not seem to be reflected in the log 
file, always rerun the test with TRACE_APPL_FLUSH=0 to ensure that 
errors are not being discarded because the TRACE_APPL_FLUSH 
flag is not set properly. 

Platform-Specific Logging 

NWDS Version 2.0 includes platform-specific (PS) logging that is easier to integrate with any existing 
tracing mechanisms. This feature generates a one-line error message to a platform-specific report 
device. For more information about the error, you should always review the NetWeave log files. Please 
note that the platform-specific features augment, not replace, the existing functions. 

The following conditions determine which one-line message is sent to the platform-specific log: 

• If an application is not using nwds_msglog(), then the one-line error is the core error 

returned from the NetWeave core O/S layer. The error code in this message would most likely 

be an O/S-defined error code from a file such as errno.h on UNIX or winerror.h on NT. 

• If an application is using nwds_msglog(), but TRACE_APPL_FLUSH is not set, or set to 0, 

then any application messages with severity at least NWDS_MLSERROR (and the associated 
NetWeave core O/S layer messages) are written to the platform-specific log. 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 70 

• If an application is using nwds_msglog() and TRACE_APPL_FLUSH is set to 1, then the 

application's messages with severity at least NWDS_MLSERROR are sent only to the platform-
specific log. 

To enable platform-specific logging, set TRACE_SYSLOG_ENABLED=1 on platforms that support PS 
logging. Platforms that do not support PS logging will ignore this switch. The following sections 
explain how platform-specific logging works on each platform for which it is currently available. 

Windows NT 

Platform-specific logging on WinNT sends messages to the Windows NT Application Event Log. To 
look at these messages, use the Event Viewer in the Administrative Tools folder. Because WinNT 
requires that a Registry key be present for each application that generates messages, an application must 
register a messages file that dictates how to interpret the messages in the event log. To assist this 

process, the NetWeave NT distribution contains two files, nwreglog.exe and nwmsgs.dll, that 
must be present and executed on each machine that collects NetWeave PS log messages. To run 

nwreglog, do one of the following: 

• If nwreglog.exe and nwmsgs.dll are in the same directory, simply execute 

nwreglog. 

• If nwreglog.exe and nwmsgs.dll are in different directories, execute nwreglog 

<PathtoMsgsfile>, where the parameter indicates the pathname of the nwmsgs.dll 
file. 

NOTE: Because nwreglog does not run over a telnet session, it must be run from the console 

of the Windows NT machine. 

If a network contains multiple NT machines, you may consolidate the platform-specific log messages 
from one machine’s event log by specifying the machine name as the value of the parameter 

PS_NT_LOG_SERVER. Note that the machine on which the messages are to be logged and viewed is 

the machine that requires the execution of nwreglog as described above. 

In the example below, the application event log on MACHINEB contains the PS messages from the 

application, and nwreglog must be executed on MACHINEB: 

[TRACES] 

TRACE_LEVEL=ERRORS  

MSGLOG_LEVEL=ERROR  

TRACE_SYSLOG_ENABLED=1  

PS_NT_LOG_SERVER=MACHINEB 

FILE_NAME=@TRACE_FILE@ 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 71 

MVS/CICS 

If you are using platform-specific logging on the MVS/CICS platform, EXEC CICS WRITE 

OPERATOR writes messages to the CICS SYSLOG. The following parameters have been defined in the 

[TRACES] group for operating on MVS/CICS with TRACE_SYSLOG_ENABLED=1: 

Keyword Default Description 

CICS_DATE_FMT YMD Specifies position of year, month, day in the timestamp. 
Set to either YMD, DMY, or MDY. 

CICS_PROG_ID NETWEAVE The Program ID shown after the date/time, before the log 
text. 

CICS_ACTION NONE The operator action level issued in the EXEC CICS WRITE 

OPERATOR ACTION(xx) command. The following text 
strings are valid values: 

• NONE (corresponds to 0) 

• IMMEDIATE (2) 

• EVENTUAL (3) 

• CRITICAL (11) 

To use another numeric value, enter the decimal value 
(either string or decimal). 

Sample group from the Router's INI file: 

[TRACES] 

TRACE_LEVEL=ERRORS 

MSGLOG_LEVEL=ERROR 

TRACE_SYSLOG_ENABLED=1 

CICS_DATE_FMT=DMY 

CICS_PROG_ID=ROUTER 

CICS_ACTION=EVENTUAL 

FILE_NAME=@TRACE_FILE@ 

Tandem 

With TRACE_SYSLOG_ENABLED on Tandem/Guardian, NetWeave generates PS log messages to the 
Event Management System (EMS). All PS error messages are logged as critical events. 

UNIX 

On all NetWeave UNIX platforms, including RS6000/AIX, DEC/Tru64, Sun/Solaris, HP/Hp-UX, and 

Linux, the syslog() call is invoked with messages destined for the PS log. Depending on the 

configuration of the syslogd daemon, the messages may be forwarded to another host, displayed on 

the console, or simply stored in the syslog file (whose location is platform-dependent). 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 72 

Supported Platforms 

Platform Operating systems Protocols Default INI file name 

DEC VMS 

OPEN_VMS 

TCP/IP 

UDP/IP 

nwds.ini 

PC Windows 95/98 

Windows NT 

Windows 2000 

OS/2 

TCP/IP 

UDP/IP 

nwds.ini 

<Many> UNIX TCP/IP 

UDP/IP 

nwds.ini 

TANDEM Guardian TCP/IP 

UDP/IP 

Dollar_RECV 

Pathsend 

nwdsini 

UNISYS MCP TCP/IP nwds.ini 

IBM MVS/CICS TCP/IP 

QACCESS 

nwdsini 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 73 

Sample INI Files 

The following sections contain sample INI files that are correct for most platforms. To include 
comments in an INI file, use the asterisk (*) at the beginning of a line. 

Simple Communication Between Two Processes 

Figure 6. Simple communication between two processes 

The INI file below contains the information for application processes #1 and #2: 

[PROCESS_NO_1] 

@TRACE_FILE@=<valid file name> 

PUBLIC_NAME={PROCESS_NO_1_TCPIP} 

USER_NAME_GROUP=PROCESS_NO_1_PRIVATE 

 

[PROCESS_NO_1_PRIVATE] 

<application logical>=<value> 

 

[PROCESS_NO_2] 

@TRACE_FILE@=<valid file name> 

USER_NAME_GROUP=PROCESS_NO_2_PRIVATE 

 

[PROCESS_NO_2_PRIVATE] 

<application logical>=<value> 

 

[PROCESS_NO_1_TCPIP] 

PROTOCOL=TCPIP 

TCPIP_ADDRESS=<valid dotted address e.g. 190.130.7.15>  

TCPIP_PORT=<valid port number e.g. 7001> 

 

[TRACES] 

TRACE_LEVEL=ERRORS 

FILE_NAME=@TRACE_FILE@ 

 
Application 
Process #1 

Application 
Process #2 

NetWeave 
Library 

NetWeave 
Library 

NetWeave 
INI file 

NWDS_IPC_PUBLISH(PROCESS_NO_1) NWDS_IPC_CONNECT(PROCESS_NO_1) 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 74 

NetWeave FIFO Queues 

One process (the producer) sends messages to a second (the consumer). 

Figure 7. Using FIFO queues to send messages 

Producer’s INI File 

This sample file assumes that the NetWeave Agent and the FIFO that it manages are co-located with the 
producer application. In this configuration, the producer application is not affected by network failures. 
Assume the consumer application is on another computer. 

[PRODUCER] 

@TRACE_FILE@=<valid file name> 

USER_NAME_GROUP=PRODUCER_PRIVATE 

 

[PRODUCER _PRIVATE] 

<application logical>=<value> 

 

 

Producer 

Consumer 

NetWeave Library 

NetWeave Library 

NetWeave 
INI file 

NetWeave 
Agent 

NetWeave 
INI file 

Agent’s 
FIFO File 

NWDS_FILE_OPEN(USERS_FIFO_FILE) 
NWDS_FILE_WRITE 

NWDS_FILE_OPEN(USERS_FIFO_FILE) 
NWDS_FILE_READ 

Connection made with 
AGENT_TCPIP 

Connection made with 
AGENT_TCPIP 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 75 

[USERS_FIFO_FILE] 

NAME=AGENT_TCPIP::AGENTS_FIFO_FILE 

 

[NW_SERVER] 

@TRACE_FILE@=<valid file name> 

PUBLIC_NAME={AGENT_TCPIP} 

 

[AGENT_TCPIP] 

PROTOCOL=TCPIP 

TCPIP_ADDRESS=<valid dotted address e.g. 190.130.7.15> 

TCPIP_PORT=<valid port number e.g. 7001> 

 

[AGENTS_FIFO_FILE] 

NAME=<valid file name> 

FIFO_FILE=1 

 

[TRACES] 

TRACE_LEVEL=ERRORS 

FILE_NAME=@TRACE_FILE@ 

Consumer’s INI File 

[CONSUMER] 

@TRACE_FILE@=<valid file name> 

USER_NAME_GROUP=CONSUMER _PRIVATE 

 

[CONSUMER _PRIVATE] 

<application logical>=<value> 

 

[USERS_FIFO_FILE] 

NAME=AGENT_TCPIP::AGENTS_FIFO_FILE 

 

[AGENT_TCPIP] 

PROTOCOL=TCPIP 

TCPIP_ADDRESS=<valid dotted address e.g. 190.130.7.15> 

TCPIP_PORT=<valid port number e.g. 7001> 

 

[TRACES] 

TRACE_LEVEL=ERRORS 

FILE_NAME=@TRACE_FILE@ 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 76 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 77 

Glossary 

Agent The NetWeave process that controls all input and output to queues, sends 
notifications to clients when data base changes have occurred, and is 
responsible for all aspects of security and data conversion. 

Asynchronous An operation in which the applications program is allowed to continue 
execution while the operation is performed. The access method informs 
the application program when the operation is completed. 

Broadcast services Simultaneous transmission of data to more than one destination: one 
sender, unlimited receivers. Message deliveries are connectionless and 
unacknowledged. 

Client-database 
services 

Allows all other computers in the network, regardless of platform type, to 
access one computer’s file system. 

Client-server model A client application sends a request message to a server program. The 
server program retrieves information or updates a local database on behalf 
of the (remote) client application. 

Client-transaction 
services 

Applications where programs communicate and synchronize operations by 
exchanging messages (IPC). They are used to implement on-line 
transaction processing and high-speed, real-time process control 
applications. 

Consumer process An asynchronous procedure that is responsible for processing the data in a 
message queue. 

Dispatcher In a distributor-based threaded server, the Dispatcher (provided by 

Netweave as part of the nwds_dispatcher_ function set) is 
responsible for creating application threads and passing messages to them 
once started. 

Distributor A NetWeave-provided facility for multi-threaded server processes. The 
Distributor starts and manages simple application threads for processing 
messages. 

Event-driven design A non-procedural methodology of software development that is 
asynchronous in nature, and is fundamentally multi-threaded because it 
allows you to maintain multiple concurrent sessions. 

 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 78 

 

Interprocess 
communication (IPC) 

The process by which programs communicate data to each other and 
synchronize their activities. 

Item list A variable-length array of parameters whose last element is a unique type, 

NWDS_END_OF_LIST. Each element (item) in the array has three 
components: 

• Type: a constant from netweave.h that identifies a parameter 

(parameter name). 

• Length: the length of the parameter value. Most parameters are 
either 16-bit integers (NWDS_SHORT) or 32-bit integers 
(NWDS_LONG). Variable-length parameters are considered to be 
of type NWDS_CHAR. For return item lists, the length is the 
maximum number of bytes that can be copied to the destination 
location. 

• Pointer to value: for a control item list, this is the address of the 
location in memory where you have stored the value you want to 
assign to the parameter. For a return item list, this is the address in 
which to store the returned value. 

Legacy application The vast collection of commercial and scientific applications written since 
the late 70s that share one or more of these features: 

• The application resides on a single hardware platform. 

• The user interface is the traditional character-oriented terminal. 

• Access to related application functions is via menus and function 
keys. 

• Application data are stored in record-oriented files. 

• Access to these records is typically through keys and indices. 

Loopback testing mode Used for unit testing locally. Most applications except client-database can 
(and should) be constructed to run on a single platform. For example, if 
you are doing IPC messaging, construct a simple client or server to interact 
with your application. Such a test bed is said to run in “loopback” mode. 

Netweave.h NetWeave header file. Contains the official definition of the API. 

On-line transaction 
processing (OLTP) 

A system that processes multiple transactions concurrently and where the 
data flows to/from the computer directly from the point of origin. 

Peer-to-peer model Data communications between two nodes(processes) that have equal status 
in the interchange. Any peer node can both generate messages to other 
processes as well as receive (unsolicited) messages from other processes. 

 



NetWeave Distributed Services Configuration Guide     Version 2.0 

January 2008 79 

 

Polling for a completion Monitoring a flag that the completion function sets up when the 
(asynchronous) NetWeave function finishes. 

Producer application In FIFO message queuing, a producer puts messages at the tail of the 
queue, and a consumer gets messages from the head of the queue. 

Queuing services NetWeave services that store messages awaiting delivery. Queuing 
services are often the core of store and forward applications. 

Receiver application A process that reads and reacts to broadcast messages. 

To scale  
(growth of application) 

To enlarge or expand either a process, or the number of messages that a 
process can handle. 

Sender application An application program that generates a message to broadcast. 

Synchronous  
function call 

Initiated by a process that requests a specific event. All other processing is 
suspended until a response is received for the request. 

Thread, 
boss thread, 
worker thread 

The boss/worker thread model is a thread-based mechanism for work 
distribution between threads. A unit of work is delivered to the boss, which 
chooses a worker thread to perform the task and then  return the result to 
either the boss or the originator. 

UDP datagram User Datagram Protocol (UDP) is an IP protocol. Datagrams are ideal for 
broadcasts because they are delivered to the IP network layer regardless 
how many nodes in the network may consume the information. A 
datagram is the basic unit of information passed across the Internet 
environment. It contains a source and destination address along with the 
data. An Internet Protocol (IP) datagram consists of an IP header followed 
by the data.  

Unsolicited message A message that a process receives without any prior prompting. 

Workflow model 

 

The automobile assembly line is a paradigm for the workflow model in 
manufacturing. Each cell accepts the outputs of its predecessors as its 
inputs, modifies the assemblage and passes its output to its successors. 

 

 


