w

S

NetWeave Integrated Solutlons Inc.

d

NetWeave
APl Guide

User’s Guide for Version 2.0 January 2003

www.nefweave.com

Copyright © 2002-2003 NetWeave Integrated Solutions, Inc.. All rights reserved.
Netweaveis aregistered trademark of Netweave Integrated Solutions, Inc.

Windows NT isaregistered trademark of Microsoft Corporation.

CICS, MVS, and MQSeries are registered trademarks of the IBM Corporation.

UNIX isaregistered trademark of The Open Group.

Tandem, Guardian, VMS, and OpenVMS are registered trademarks of Hewlett-Packard.
All other trademarks are noted in the text and are the propetty of their respective owners.

Table of Contents

INTRODUCTION.ottt e e e e e e e et e e e e e e e s esaba b e et aaeeessaasbbeeeeeaaeeeesassbrreeeeaanss 1
TRENEWEBVE APIS ... e et e e e e e e e ettt e e e e e e e s s seatbbeeeeaaeeeaannns 3

S To N = RS PRRT 3

THEAPI OPLIONS ...ttt ettt et e st e e sab e e e sab e e e st e e e abbeeenbeeenneeeennes 5
What' SNEW fOr VEISION 2.0.......cuiiiiiiiiie ettt e e e e e e et b e e e e e e e e e e e eaabrreeeeaeeas 6
PROGRAMMING CONCEPTS ...ttt e e et e e e st e e e e e ar e e e e e snreaeeeanns 7
Callback Routines (NWDS CALL BACK) ..ottt a e e nnnee s 8
The Item List (NWDS ITEM _LIST) ...uiiiiiiiiiie ettt et e s e e e e nnnaa e e e snnaneeeanes 10
INT FTLES ettt e e e e e e et b b e e e e e e e e e ee bbb e e e e eaaeeeeantabbbeeeaaeeeesassrrrnneeaanns 11
Parameters and POINLEIS.........oo e e e e e e e e e et e e e e e e e e s snarraeeeeaaeas 12
MESSAGING LIMITSeeiiiiiiiie e e e e e e e e e e e et r e e e e e e s e e snaabeeeeeeaeeessnsntranneeaenns 13
API FUNCTIONS GROUPED BY USE.....outiiiiiiiiiiieeee ettt avnre e 14
ALPHABETICAL LISTING OF FUNCTION CALLS ... 17
NWDS BATCH...... ittt et e e et e e e et e e e e aat e e e e e eabseeeeeanaseeaeensaeaeesannneeeeanns 18
NWDS CONVERT _DATA . oottt ettt ettt e e e et e e e et e e e e st e e e e e asaeeeeessaeeeeanssaeeessnneeeeanns 20
NWDS _CONVERT_RECORD.......ccciitiiteeiiiiteeeiiiieeesssteeeesssseeasssssasesssssssesesasssseesssssseessssssseesanns 23
NWDS DISPATCHER CREATE ..ottt e et e e e et rre e e e e 27
NWDS DISPATCHER STATS ...ttt s e e e et e e e e st e e e e e saaeee e s eneeeeeanns 30
NWDS DISPATCHER STORP.......cociiiiiiieeciiiee ettt e st e s e e e e st e e e e et e e e e saae e e s e snaaaaesenneeaeanns 32
NWDS ERROR _TEXTiiiiieiiiiiie e ettt e e sttt e e s st ee e e st eaeaasstaaaeasssaeaeessseeeeaansaeeeeanssaeeessnsneeeeanns <%
NWDS EXECUTE ..ottt ettt ettt e e e e e e et e e e e e e e e e e e aaabe e e e e aaeeessnnnttrneeeaanns 36
NWVDS EXIT .ttt e e et e e e ettt e e e e e aa e e e e e eabaeeeeesseeeeeansaeeaeanssaneesanseneeeanns 41
NWDS FILE CLOSE....... oottt ettt e e e et e e e e st e e e e e eaa e e e e aaaeeeeesaaneeessnnneeeeanns 43
NWDS FILE COPY ..ottt ettt e e ettt e ettt e e e et e e e e saba e e e e e ae e e e e e snsaeaeeassaaaesanneeeeanns 46
NWDS FILE CREATEoiti ittt ettt e et e e sttt e e e sttt e e s astaaa e e nntaeeeessaeeeeennsaeeeeassaeeeeansnneeeanns 49
NWDS FILE DELETEottt ettt et e e et e e e e e tae e e e e saaaee e s enneeeaeanns 52
NWDS FILE INFO ..ottt e e e et e e e e bt e e e e st e e e e e snaaeeesanneeeeanns 55
NWDS FILE OPENciitiiee ittt e e e ettt e e e et e e e e st e e e e e e asse e e e e ansaeeeeansnaeeesanneeeeanns 59
NWDS FILE POSITION.....ciiiiiitiiieiiiiite ettt e et e e e st e e e ssteeaeesstaeaesesneeeeasnsaeeaeasssaeaesssneeesanns 63
NWDS FILE READ .ottt ettt e e e e e et e e e e e e e e e s e eaaa b e e e e e e e e e e s snntrrneeeaanas 67
NWDS FILE REMOVE.......oo ottt e e e s e e e e naaae e e s ebaneaeanns 70
NWDS FILE UPDATE.ottt et e e e et e e e e et e e e e saaa e e e e e nnsaaaesannnneeeanns 73
NWDS FILE WRITE......ccteiee ittt ettt e et e e e et e e e e st e e e s e st e e e e e ansaeeaeansaaeesannneeeeanns 76

NWDS INI_DELETE NAMEcooveeeeeeeeeeeeee e eeeeeeeee e e ees e s eese e s es e ee e seeeees e 79

NWDS_ INT GET INT oreveeeeeeeeeeeeeeeeeeeeesessesesseseseeeeseseessseessesseassseessseessseesssessssessessesessesesee 81

NWDS INI GET NAME .. oot ee e eeeeese e e e s es e s s eseeeseee e eseeese s eseeeses e eseesres 83
NWDS INI_PUT NAME ..ot eeeeeeeseseeeee e seeeseeseeesess e es e s eeseaseesseee s esesessesseeseeesassseseesses 86
NVVDS INIT oo eeeee e s seee s es e s ee s ee e s se e es e s ee s eseeeseeesees e s eeeeeseeeseeseeeseeenes 88
NWDS IPC ACCEPT ...ttt veeeee e eet e e s s es e s e ss e eseee e es e s s eeeseeses e ereesse 89
NWDS IPC_BROADCAST ...t eeeeeee e sveeeee e seess s eeeee e sseessees e eseeese s eseesess e eeeeeee %)
NWDS IPC_CONNECT ...t eeeeeeeseeeeeeeeeeseeeseeseeesesseseseseseessseseeesees s eseeesseseeeseeesasseeseeeees %
NWDS _IPC_OPTIONSeveeeveeeeeeeeeeeeseeseseessseeseeesssseesessesesssesees s eseeesesssseseeesseseeeseeeseessreseeeses 98
NWDS TPC PUBLISH ...t eeeeeeeee e eseeeseee e eseee s e es s s eeee s eseee s s esesesesseeeseeeseseeees e 101
NWDS IPC_READ ...ttt ee e eeeee et e e ee e s e es e s ee e ee e es e se e eseee s ee e eseeseseeeeseee 104
NWDS IPC REGISTEReeoveeveeeeeeeeeeeseeeeseessesseseseeeseeseesessseesesesesessesssesseeseseseeseseseseseaseesseees 107
NWDS IPC_SHUTDOWNceoveeeeeeeeveeeeeeeeeeseseeeseeesees s eseessesessesseesesessesseeseseseessseseeeseeseeseees 110
NWDS IPC WRITE ...ceoveeeeeeeeeeeeeeeeseeeseeeesseeesese e esaeesese s eseesseseseesseeseseseeeseeseseseeeeeeseeeseseeeeseees 113
NWDS ITEM_LOAD_CHAR......cioveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesseessese e eseeeseee s s eeseseseeseeeseeesseeees e 116
NWDS ITEM_LOAD HANDLEoouiveeeeeeeeeeeseeeeeeeeseeeeeeseeeseeses s eseseseseeeseseseeseseseeeseaseeeseees 118
NWDS ITEM_LOAD _LONG.......coveeeeeeeeeeeeeeseesseesesesesseeseessesesseseeesesessessesseseseeseseseeeseaseeeseeees 120
NWDS ITEM_LOAD _SHORT ...t eveeeeeeeeeeeeseeeeseeesessesseesseseseesseeseseseesseeseseseesseesesesesseeeseees 122
NVWDS LOGOFFt eeeeeeeeeeeeeeeeseeeeeeseeesese e eseeesese e es e s ee s eseeeseeeseeeeeeseseseeseeeseeeseeeeees e 124
NWWDS LOGONeoeeeeeeeeeeeeeeeeeseeeeeeeeseee e sseeesese e eeeeese s eseeeseseseeeeeeseeesesseeseeeseeseeeseeseseeeeseee 126
NVWDS IMSGLOG ...t eeeseeeeeeeeseeeseee e eseeeseee e eseseseee e eseeesesesses e eseeesseeseeseseseeseseseeeseeeeeeseees 127
NVWDS PASSWORDvooeeeeeeseeeseeeseeeseseeesseeeseseesesseesessseseessesesses s esesessesseeseseseessseseeeseeeeeseees 130
NVWDS PING ..ot eeeeeee e eeeeese et esseesese e es e sese s eseeeseseseee s eseeeseeeseeseseseeseseseeeseseeees e 131
NWDS _SESSION_CLOSE.......ecveeeeeeeeeeesseesseeseesseeseeesesseesseessesseeseeesesesssessesesesseeeseeesseeesseee 133
NVWDS SLEEP ... oottt eeee e es e eeee e seeeseee e eseeseee e es e s ee e s e es e seee e eseeeseeeeeeseeeseaeeeseees 136
NWDS SLEEP CALLBACK ... veeveeeeeveeeeeseeeeeeseeesaeesessesseessesesessesesessesseeseseseesseeseseseseeesseees 138
NWDS SLEEP CLEAR CALLBACKeveeveeeeeeeeteeeeeeeeeseeeseseseseeeseseseeseeesesesessesesesesesseeeseees 141
NWDS _SQL_COLUMN _BIND.......ovovereveeeeseeeseeseesseeesesseesseessessseeseeesesesseseesesesessesesesesesseesseees 143
NWDS SQL_COLUMN_COUNTcveeeeeeeeeeeeeseeeeeeeseeseesseesseseeeseeesesesessessesessseesseesesseesseee 144
NWDS SQL_ COLUMN_GET w.eorveeeeeeeeeeeeeseeeeeseeeseeesesseeseeesesessesesesesessesseeseseseeseseseseseaseeeseees 146
NWDS SQL_COLUMN _INFO.......ovoteeereeeeeeeeseeseeeeseeesesseeeseessessseseeeseseseesseesesesessssesesesesssesseees 149
NWDS SQL_CONNECT ... veveeveeeeeeeeeveseeeeseeeseseeeseeesese s eseesseseseesseeseseseeeseeseseseeseeeseeeseseeeeseees 152
NWDS _SQL_DISCONNECTveeeeeeeeveseeeeseeeeeseeeeseeeseeseesseesseseseseeeseeeseesessesesesseeeseeessseesseees 154
NWDS SOL_EXECUTE ...t eeeeeeeee e eeeesseeseeseeeseeeeesessseseeseseesseessesseeseseseeseseseeeseseeeseees 155
NWDS SOL. FETCH..veeveeeeeeeeeeeeeeseeesesesesseeesessssesseeseseseseessesesses s esesessesseeseseseesssesesessaseeeseees 158
NWDS SOL_ SELECT vvrveeeeeeeeseeeeeeeseeeesseeeseseeeseeesees et eesseseseesseeseseseeeseeseseseeseseseeeseseeees e 161
NVWDS STOP. ...t eeeeeee e eseeese e eseees e e e es e s ee e es e s ee s ee et eee s eeeeeseseseeeeeeseeeseeeeees e 164
NWDS SYSTEM_TYPEeeeeeeeseeeeeeeeeeeeeeeeeeeseeseeeese e eseeeseee s s es e s s essese s eseeeseeeseseeeeseee 166
NWDS TIMER _START «..ooeeeeeeeeeeeeeeeeeeeeeeseeesesseeseeesessesesessseeessessesesessesseeseseseeseseseeeseaeeeeseees 169

NWDS_ TIMER STOP....veeeeeeeeeeseeeseeeseseeesseeesesseessseseeessseeesesessessesesessesseeseseseessseseeesesseeeseees 172

NWDS TP _ABORT ...t e e 174

NWDS TP _COMMIT ...ttt ettt ettt e e e et e e e eaa e e s eas e e eae e e s beeesneeesnseeesnneeeanneas 175
NWDS TP _RESUME........ciiiiiie ittt ettt e e e e st e e et e e e s e e e st e e sneeeanneaeannaeeanneas 176
NWWDS TP ST ART ettt e e e e e et e e e e et e e e e e eabeeeeeesseeeeaassreeeeaasbaeaesassneaans 178
NWDS TP STATUS ...ttt e e et e e e et e e e e e b e e e e etae e e e s aareeeeeanbaeeesasnneeeans 181
NWDS TRIGGER _CANCEL.......ooiiiiitiiie ettt e e s e e e e e e ae e e e anneeeean 182
NWDS TRIGGER READoooiitiieitiee ettt ettt sae e st e e st e e et e e e ne e e snneaesneeeenneas 184
NWDS TRIGGER REGISTER...........uttiiieiiie ettt e et e e et e e e e eatae e e s eaaeeaeans 187
ITEMTYPES AND VALUES.ottt ettt ettt a e s e e e e e anane s 189
Common 1temM List DEfINITIONScooieiiiiiiiee ettt e e e e rbrre e e e e e e e eeabbbreeeeeeeeeens 191

Assigning a Constant Length Vaue to aParameter.............occveveiiieiee i sieee e sieeee e 191

Assigning a Variable Length Value to aParameter............oocvveeeiiiiiie i 191
Message QUEUE (FIFO) FIES.......couiiiiiii ettt 193
(€7 0T ol O | = ST POPPUPURRR 14
NETWEAVE KERNEL FUNCTIONS FOR WINDOWS NTcooiiiiieiiieee e 195
NWDS NT _CLEAR EVENT ...ttt ettt e e et e e e et e e e e s e e e e e nsaaa e s annneeeeans 197
NWDS NT DEFINE EVENT ...ttt ae e snn e e s e e e naeeenneas 199
NETWEAVE KERNEL FUNCTIONS FOR UNIX ..ottt 200
NWDS UX CLEAR EVENTottt ettt e et e e et e e e e ae e e s enaeeeean 202
NWDS UX DEFINE EVENTooii ittt e et e e e e saae e e e e nnbae e e s annneaean 204
NETWEAVE KERNEL FUNCTIONS FOR DEC, VMS, AND OPENVMS.........ccccoceeeevnne... 205
NWDS VMS CLEAR EVENT ..ottt ettt e e e earae e e e enneeaean 207
NWDS VMS DEFINE EVENT ..ottt e e naan e e e ennee e 209
NETWEAVE KERNEL FUNCTIONS FOR TANDEM.......cccuiiiiiiieee et 210
NWDS KERNEL CALL BACK ... ettt ettt e e e tre e e e e eabae e e e eaneeaean 212
NWDS KERNEL RECV _CALL BACK ...ttt 214
NWDS TANDEM CLEAR EVENTSoo ittt ettt e e e ee e 218
NWDS TANDEM _CLEAR SYSTEM _EVENTS ...ttt 220
NWDS TANDEM _DEFINE EVENT ..ottt st s aesnaeeenneas 222
NWDS TANDEM DEFINE SYSTEM EVENToooiiiii ettt 224
NWDS TANDEM REPLY X ...ttt ettt e e s et e e e s e are e e e e nnaae e e s anneeeeans 226
NWDS TANDEM _RECEIVEINFOccotiiiiie ettt 228
RETURN CODES AND RECOVERY ...ttt ettt et e e e 229
RETURN CODE NUMERIC DEFINITIONS ..ot 238

GLOSSARY e 246

I

NetWeave API Reference Manual Version 2.0
L]
Introduction
The NetWeave API provides function calls for client-transaction applications, messaging services, and

data server applications. The function calls connect local applications and/or file systems to remote
applications and/or file systems.

The NetWeave API is the programmatic interface to the NetWeave product. It is virtualy identical on
every platform, though there are constructs, known as itemlists, which you can use to access platform:
specific features through the NetWeave API. The function calls that comprise the NetWeave APl are
smple to understand and use in their basic form, while alowing enough power and flexibility for
industrial strength conditions. Examples of this power and flexibility are the itemlist capability, as well
as the ability to use the NetWeave services either synchronously or asynchronoudly.

The simplest way to use the AP is to make synchronous calls. When you call afunction synchronously,
the operation (such as reading a record from aremote file, or sending a message to a remote application
and waiting for confirmation) is performed to completion, and the completion status of the function is
returned. The call always waits until the function is completed before it returns to the caller.

In asynchronous operation, the caller specifies a callback routine for NetWeave to invoke once the
operation is complete, the function calls return immediately with a status of PENDING, and the final
operation status is supplied to the callback function that NetWeave will call when the entire operation
has completed.

This section introduces some of the basic concepts used throughout the NetWeave API. The rest of the
manual lists each NetWeave function call aphabetically, explaining the purpose, parameters, return
values, and error codes that are associated with the call.

January 2003 1

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003

Basic API

The basic NetWeave API implements the features of the NetWeave product on behaf of the calling
application. The table below lists the basic API functions. For a description of what each function does,

NetWeave API| Reference Manual Version 2.0
The NetWeave APIs

|

please see page 14.
NetWeave option Function Used for
Basic NetWeave nwds_batch Process initialization

nwds_execute

nwds_init Initialization
nwds_item_load_char
nwds_item_load_handle
nwds_item_load_long
nwds_item_load_short

nwds_ini_delete_name Retrieving application-specific
nwds_ini_get_name information from the INI file.
nwds_ini_put_name

nwds_ping Identification
nwds_system type

nwds_tp_abort Transaction processing
nwds_tp_commit
nwds_tp_resume
nwds_tp_start
nwds_tp_status

nwds_exit Timing/sleep
nwds_stop

nwds_sleep
nwds_sleep_callback
nwds_sleep_clear_callback
nwds_timer_start
nwds_timer_stop

nwds_convert_data Translation
nwds_convert_record

nwds_logon Security
nwds_logoff

nwds_password

(continued)

January 2003 3

NetWeave API Reference Manual Version 2.0
NetWeave option Function Used for
Basic NetWeave nwds_session_close IPC services

I.J
||| nwds_ipc_accept

nwds_ipc_connect
nwds_ipc_options
nwds_ipc_publish
nwds_ipc_read
nwds_ipc_shutdown
nwds_ipc_write

(continued)

nwds_dispatcher_create Thread services
nwds_dispatcher_stats
nwds_dispatcher_stop

nwds_error_text Error messages and logging
nwds_msglog

January 2003

other API options:

Data server: remote file access

Message queue: guaranteed delivery messaging FIFOS
Broadcast services. multicast messaging

RFT: reliable file transfer

III NetWeave API Reference Manual Version 2.0
L]
The API Options
To expand your repertoire beyond what the basic NetWeave API offers, you can add one or more of the

NetWeave option Function Used for

Data server nwds_file_close File services
nwds_file_create
nwds_file_delete
nwds_file_info
nwds_file_open
nwds_file_position
nwds_file_read
nwds_file_remove
nwds_file_update
nwds_file_write

(formerly client-
database)

nwds_sql_column_bind SQL
nwds_sql_column_count
nwds_sql_column_get
nwds_sql_column_info
nwds_sql_connect
nwds_sql_disconnect
nwds_sql_execute
nwds_sql_fetch
nwds_sql_select

nwds_trigger_cancel Notification
nwds_trigger_delete
nwds_trigger_read
nwds_trigger_register

Message queues nwds_file_close Guaranteed delivery messaging
(FIFO) nwds_file_create
nwds_file_info
nwds_file_open
nwds_file_position
nwds_file_read
nwds_file_remove
nwds_file_write

Broadcast nwds_ipc_broadcast Multicast messaging
nwds_ipc_register

File transfer Command line executable File services

RFT API in development

nwds_file_copy File senices

January 2003 5

III NetWeave AP| Reference Manual Version 2.0
*
What’s New for Version 2.0
Many of the enhancements for Version 2.0 of NWDS are configuration-related, and do not affect the

API. Thetable below lists the topics that have enhancements and the NWDS document that describes

the changes.
Feature Document

Dynamic INI files Configuration Guide

INI file management Configuration Guide
Load balancing Configuration Guide
Platform-specific logging Configuration Guide
Message logging on IBM/CICS IBM Release Notes
Sync API for IBM/CICS C programs IBM Release Notes
Alpha/Open VMS release for OpenVMS 7.1 N/A

January 2003

III NetWeave API| Reference Manual Version 2.0
*

Programming Concepts
To usethe API effectively, you need to understand how to use the following:

- Callback routines

- Item lists

- INI files

- Programming conventions
- Messaging limits

Before using the API functions, please review the information about these topics.

January 2003

III NetWeave API Reference Manual Version 2.0
Callback Routines (NWDS_CALL_BACK)
A callback routine, sometimes referred to as a completion function, is a user-written function that

executes when the 1/0O operation completes. To implement NetWeave' s asynchronous function calls,
you have to use callback routines.

A callback structure contains two elements:;

- Context, a pointer to a persistent structure in the application’ s data space
- Callback function address, a pointer to the application’s completion function

The application designer creates a callback structure (shown below) to contain al the information the
application will need to continue its thread of operation when the NetWeave function call compl etes.

typedef struct {
NWDS_CONTEXT cont ext;
NWDS_CALL_BACK PROC *procedure;
} NWDS_CALL_BACK;

If the context points to something (i.e., is not NULL, which isavalid option), that something must be
available when the callback function executes. Typicaly, it is not good programming practice to point
to a stack variable, which may or may not be present when the callback is called. Although the context
can point to aglobal or static data element, it should really point to a dynamically alocated memory
buffer.

The second element of the callback structureis a pointer to the application’s completion function. All
completion functions must follow the format below:

typedef void (NWDS_CALL_BACK PROC) (NWDS_CONTEXT, NWDS_ERRNO) ;

January 2003

|

III NetWeave API Reference Manual Version 2.0
Parameter Description
NWDS_CONTEXT The same pointer that you passed to NetWeave as the first

parameter of the callback structure. When the operation completes,
NetWeave returns information to indicate the state of the
application at the time the NetWeave call was initiated.

NWDS_ERRNO The return code from the completion of the NetWeave operation.

An asynchronous function call is divided into two parts:

- The initiation phase, which isinvoked when the user makes the NetWeave function cal. If the
operation returns N\\DS_PENDI NG to the caller, it means that the operation is underway. If it
returns an error, the operation never started. In some rare cases, the function invocation will

return N\DS_ SUCCESSFUL to indicate that the function has completed successfully and there
will be no callback invocation.

- The completion phase, which NetWeave invokes after the remote operation has completed. To

indicate the result of the remote operation, NetWeave passes an error condition to the
completion routine.

To cal the asynchronous library function calls synchronoudly, you can either passa NULL directly, or
st the pointer to the callback structure to NULL. In synchronous operation, when control returns to the
application after calling a NetWeave function, al action is complete. In asynchronous operation,

however, the return value of N\DS_PENDI NG indicates that although a message has been sent to the
destination, the action is still in progress.

January 2003

NetWeave API| Reference Manual Version 2.0

The Item List (NWDS_ITEM_LIST)

Anitem list isan array of eements of type NIDS_| TEM LI ST, asdefined below:

typedef struct {

NWDS_| TEM _TYPE type;
NWDS_SI ZE | engt h;
Voi d *item

}NWDS_| TEM LI ST;

A NetWeave item list lets you use system-specific features to change the usual action of afunction call.
You can use an item list to access specia functions and features on supported remote platforms.

There are two types of item lists:

Control lists use the values pointed to by the associated itemlist entry (i.e. the “item”) to
change the function’s default operation.

Return lists are used to retrieve information. If the call is asynchronous, the item must point to
locations that are global, static, or dynamically alocated memory.

An item list ends with a standard element of type NIDS_END_OF LI ST. An empty (NULL) item list
isanitem list that contains only one element, of the type N\ADS_END_OF LI ST.

Parameter Description Values

Item type For each item in an itemlist, the See netweave.h (the NetWeave header
type member indicates the type of | file).

item being supplied and specifies
the optional parameters.

Item length The address stored in the item 2 (type short)
parameter points to the Item 4 (type long)
length value.

The actual length of a control item list's
array of characters

or

The maximum length of data that can be
copied to the address specified in a return
item list's buffer.

Item Always holds an address The value, of size item length, supplied to
accompany the item type and length.

January 2003 10

I

|

NetWeave AP| Reference Manual Version 2.0
INI Files
NetWeave uses INI files on each node to configure a NetWeave application network for the following

tasks:
Task Description

Name translation Translates logical names of network objects, such as processes,
files, and tables, to physical names.

Data conversion Describes the structure of network messages to enable NetWeave
to convert data representations between different platforms.

Routing Specifies how messages should travel from one platform to another
through the NetWeave application network.

Performance parameters Specifies parameters, such as buffer sizes, that can affect
NetWeave performance. Typically, you will be using the default
values for these parameters.

A NetWeave INI file uses the same syntax as the Microsoft Windows INI files. For more information
about the INI files, see the NetWeave Configuration Manual.

January 2003 11

Illl

NetWeave API Reference Manual Version 2.0
L]
Parameters and Pointers
The syntax example for each function shows the parameters that must be supplied for each function call.
An asterisk (*) before an item name indicates that it is a pointer to the item, not the item itsalf. Most of
the time NetWeave uses pointers. Y ou can pass simple parameters, such as handles or sizes, directly as

input when you make a function call. When these parameters are returned as output, NetWeave
generdly provides a pointer for the item.

January 2003 12

Illl

|

NetWeave API| Reference Manual Version 2.0

Messaging Limits

Although message size cannot exceed 32567 bytes for both IPC and queued messaging, there is no limit
to the number of fields in a message. For queued messaging, the amount of available disk storage space

determines how many messages are allowed in a queue.

January 2003

13

III NetWeave API Reference Manual Version 2.0
L]
API Functions Grouped by Use
The table below lists the NetWeave API functional groups.
Used for Function name Description
Process nwds_batch Starts a process on a remote system and waits for it
initialization to complete.
nwds_execute Starts a remote process and returns.
Initialization nwds_init Initializes the NWDS library.

nwds_item_load_char

nwds_item_load_handle

nwds_item_load_long

nwds_item_load_short

Handles itemlist loading functions.

Identification

nwds_ping

Tests for existence of NetWeave connectivity.

nwds_system_type

Determines type of remote system.

Timing/Sleep nwds_exit Returns NetWeave resources to system.
nwds_stop Terminates the process that nwds_execute started.
nwds_sleep Waits for event during asynchronous operation.
nwds_sleep_callback Callback function from nwds_sleep.
nwds_sleep_clear_callback Cancels nwds_sleep_callback.
nwds_timer_start Starts a NetWeave timer.
nwds_timer_stop Stops a NetWeave timer.

Translation nwds_convert_data Converts a record of a specified type from one

platform’s format to another’s.

nwds_convert_record

Translates a message into the format used by
another system/compiler.

(continued)

January 2003

14

NetWeave API Reference Manual Version 2.0
Used for Function name Description
File nwds_file_close Closes a file.
management nwds_file_copy Copies a file.
nwds_file_create Creates a file.
nwds_file_delete Deletes a file.
nwds_file_info Retrieves information about a file.
nwds_file_open Opens a file.
nwds_file_position Completes a transaction involving a file/queue.
nwds_file_read Reads the first message from the file/queue.
nwds_file_remove Purges a file.
nwds_file_update Updates a specified record in a file.
nwds_file_write Appends a message to the end of the file /queue.
Naming nwds_ini_delete_name Deletes an INI file definition (memory only).
nwds_ini_get_name Retrieves an INI file definition.
nwds_ini_put_name Adds/modifies an INI file definition (memory only).
IPC nwds_session_close Returns system resources when terminating a
multicasting session.
nwds_ipc_accept Accepts an IPC connection.
nwds_ipc_broadcast Sends a multicast message.
nwds_ipc_connect Tries to establish an IPC connection.
nwds_ipc_options Queries/modifies IPC parameters
nwds_ipc_publish Publishes the IPC name for subsequent
connections.
nwds_ipc_read Reads an IPC message.
nwds_ipc_register Registers for multicast messages.
nwds_ipc_shutdown Terminates an IPC connection.
nwds_ipc_write Writes an IPC message.
Security nwds_logoff Terminates a secure session.
nwds_logon Establishes credentials for a secure session.

nwds_msglog

Handles application level message logging to
NetWeave logging facilities.

nwds_password

Specifies a password for a secure session.

(continued)

January 2003

15

NetWeave API| Reference Manual

Version 2.0

Function name

Description

I
il-

nwds_sql_column_bind

nwds_sql_column_count

nwds_sql_column_get

nwds_sql_column_info

nwds_sql_connect

nwds_sql_disconnect

nwds_sql_execute

nwds_sql_fetch

nwds_sql_select

Handles SQL database operations.

Transaction nwds_tp_abort Aborts the transaction in progress.
Processing nwds_tp_commit Commits the transaction in process.
nwds_tp_resume Resumes the transaction in process.
nwds_tp_start Starts a new transaction.
nwds_tp_status Gets the transaction status.
Notification nwds_trigger_cancel Cancels a trigger on a file.
nwds_trigger_delete Deletes a file trigger.
nwds_trigger_read Reads a file trigger.
nwds_trigger_register Registers for notification of file events.
Threads nwds_dispatcher_create Creates a thread-based connection dispatch

service.

nwds_dispatcher_stats

Retrieves the Dispatcher statistics (using the handle
created by nwds_dispatcher_create).

nwds_dispatcher_stop

Terminates Dispatcher operations.

Miscellaneous

nwds_error_text

Gets error text for the supplied error code.

January 2003

16

*

I

NetWeave API| Reference Manual

Alphabetical Listing of Function Calls

Version 2.0

January 2003

17

III NetWeave API Reference Manual Version 2.0

L]
NWDS BATCH
This function, which isincluded in al NetWeave releases, starts a process on aremote system. The call
completes when the remote process completes. If the process does not start, the nwds__bat ch function

returns an error code that indicates why.

To execute a process on a remote system, you can use either nwds_bat ch (if the process will do
something and then stop) or nwds_execut e (if the process runsin the background, or needs to stay

up indefinitely.
NVWDS_ERRNO NWDS_BATCH
(char *system nane,
char *cli _comuand,
NWDS_| TEM LI ST *itemlist,
NWDS CALL_BACK *cal | _back);
Parameter Input | Output Description
system_name v The system on which the batch process will run.
cli_command v The command that the batch process will execute.

Although the syntax is determined by the operating
system on which the command will run, the command
must consist of all printable characters and be
terminated with a NULL byte.

item_list A pointer to an array of system-specific parameters. Any
item list type appropriate for nwds_execute is usually
appropriate for nwds_batch.

call_back A pointer to a callback structure that contains the
function that NetWeave will call when nwds_batch
completes.

If call_back is set to NULL, the call is synchronous.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init() and
before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_execut e on page 36.

January 2003 18

I

NetWeave API| Reference Manual

Version 2.0

January 2003

19

format used by one computer to the format used by another. The nwds_convert _dat a cdl is
synchronous and does not take an item list.

III NetWeave API| Reference Manual Version 2.0
NWDS CONVERT_ DATA
This function, which isincluded in all NetWeave releases, converts arecord of a specified type from the

NOTE: Beforecdling nwds_convert _dat a, make sure the destination location has enough
room to hold the converted data.

NWDS ERRNO nwds_convert _data

(N\DS_DATA_CLASS dat a_t ype,
NWDS_SYSTEM CLASS to_system type,
NWDS_SYSTEM CLASS fromsystemtype,
voi d *to_buffer,
voi d *from buffer);
Parameter Input | Output Description
data_type v This value is either NWDS_SHORT or NWDS_LONG.
to_system_type v The system type whose format the data will be
converted to. Netweave.h lists all supported system
types. Example:
NWDS_ERRNO nwds_convert _dat a(
NVDS_LONG,
NVDS_ MSDOS,
NVDS_UNI X_680xx,
&dos_|I ong,
&uni x_l ong) ;
from_system_type v The system type whose data you need to convert.
to_buffer v The array where NetWeave places the converted
value.
from_buffer v An array in memory that contains the value to be
converted.
Return Code (output)
Return code Description
NWDS_SUCCESSFUL The call completed successfully.
NWDS_NOT_IMPLEMENTED The function is not available on the current platform.
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init()
and before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

NWDS_BAD_PARAMETER You are trying to call a function but one of your parameters is out
of range.

January 2003 20

|

NetWeave API| Reference Manual

For more information about the return codes, see page 229.

Related Functions

nwds_convert _record onpage?23.

Version 2.0

January 2003

21

I

NetWeave API| Reference Manual

Version 2.0

January 2003

22

III NetWeave API| Reference Manual Version 2.0
NWDS_ CONVERT _RECORD
This function, which isincluded in al NetWeave releases, trandates a message into the format used by

another system/compiler. You can use nwds_convert _r ecor dfor ether of the following:

Controlling all trandation from the sending or receiving side
Conversing with existing applications, such as Pathway serverclasses

Trandation is controlled by the message name passed as the first argument. This name must match a
group name in the INI file. Trandation is aso controlled by the aignment parameters of the source and

target systems and compilers. The nwds_convert _recor d cal is synchronous and does not take an
item list or callback.

NWDS_ERRNO nwds_convert _record (

char *message_nane,
char *source_al i gnhment _par aneters,
char *target _alignment_paraneters,
NWDS_SI ZE source_si ze,
voi d *source,
NWDS_SI ZE maxi mum_t ar get _si ze,
voi d *target,
NWDS_SI ZE *return_size);
Parameter Input | Output Description
message_nhame v The name of the INI file group that represents the
DDL definition of the message in the application’s
INI file. For more information, see the NetWeave
Configuration Manual.
source_alignment_parameters v The name of the INI file group that defines the
source system/compiler alignment parameters
(see “Translation Rules” on the next page).
target_alignment_parameters v The name of the INI file group that defines the
destination system/compiler alignment parameters
(see “Translation Rules” on the next page).
source_size v The length in bytes of the source message in the
source buffer.
source v The address of the source buffer that contains the
message that needs to be translated.
maximum_target_size v The maximum length of the target buffer.
NetWeave will not translate a message that
exceeds the buffer size.
target v The address of the target buffer that will contain
the translated message.
return_size v The actual length in bytes of the translated
message.

January 2003 23

III NetWeave API Reference Manual Version 2.0
L]
Return Codes (output)
Return code Description
NWDS_SUCCESSFUL The call completed successfully.

NWDS_DATA_OVERFLOW Translation terminated at the maximum target size. Increase
the size of the destination buffer and try again.

NWDS_BAD_PARAMETER The supplied DDL message name does not exist in the
application’s INI file. Locate the proper DDL definition and
try again.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling

nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

Translation Rules

NetWeave uses alignment rules to map data types to physical storage for a particular compiler and/or
system. The alignment rules also specify how the data types will be mapped in physical storage relative
to each other.

For each system and compiler involved in message exchange, you must add an aignment (rules) group
to your INI file. The rules group contains the following required parameters.

Parameter Default Description

SYSTEM_TYPE None The system identification value from the enum class in
netweave.h

CHAR_ALIGNMENT 1 The number of bytes between the address boundaries of
successive byte fields.

CHAR_SIZE 1 Size, in bytes of a character data element.

SHORT_ALIGNMENT 2 The number of bytes between the address boundaries of
successive short integer fields.

SHORT_SIZE 2 The number of bytes to store an integer of type SHORT.

LONG_ALIGNMENT 4 The number of bytes between the address boundaries of

successive long integer fields.

LONG_SIZE 4 The number of bytes to store an integer of type LONG.

The example below shows how to configure your INI file to use these special trand ation features.
Assume that the source system is a PC with 32-bit architecture and compiler, and the destination system
isalegacy service application on aremote platform (a Tandem host). The PC sends a request message
to the host and receives a reply message.

NOTE: Because the PC aligns short integers on 32-bit boundaries; we override the default short
alignment rule for the PC. (The aignment rule offsets the second field in the reply to the fourth
byte position for the PC, and to the second byte position for the host.)

January 2003 24

NetWeave API| Reference Manual Version 2.0
[REQUEST _MESSACE]
DDL_ENTRY = 1

U
.

DDL_FIELD 1 = CHAR 3
DDL_FI ELD_2 = SHORT 2
DDL_FIELD 3 = LONG 4

[REPLY_MESSAGE]
DDL_ENTRY = 1
DDL_FI ELD_COUNT = 2

DDL_FIELD 1 = CHAR 1
DDL_FI ELD 2 = SHORT 2
[PC_RULES]

SYSTEM TYPE = NWDS_MS_W N32
SHORT_ALI GNMENT = 4

[HOST_RULES]
SYSTEM TYPE = NWDS_NONSTOP_W DE

Related Functions

nwds_convert _dat a onpage 20.

January 2003

I

NetWeave API| Reference Manual

Version 2.0

January 2003

26

III NetWeave API Reference Manual Version 2.0
NWDS_DISPATCHER_CREATE
This function creates a Dispatcher and returns a handle that may be used on subsequent Dispatcher

operations such asnwds_di spat cher _st at s and nwds_di spat cher _st op. The
nwds_di spat cher _cr eat e function isincluded in all NetWeave releases. The call is synchronous
and does not take an item list or callback.

The process of creating a Dispatcher also creates an internal NetWeave thread known as the boss
thread. After creating the boss thread, NetWeave creates additional application threads called “worker”
threads. The Dispatcher threads process messages from remote client applications. When a new client
attaches to the Dispatcher thread, a new worker thread is created to service this client. The worker
thread procedure has one parameter (appl cont ext) that stores the program’s context.

The boss thread acts as the intermediary between the external client and the worker threads until one of
them terminates its connection with the boss. The boss then terminates the connection to the other.

typedef void (NV\DS_APPLTHREAD _PROC) (void *);
NWDS_ERRNO nwds_di spat cher _create
(char *ext _pub_narme,
char *i nt _pub_nane,
char *ctrl _pub_nane,
voi d *appl cont ext,
NWDS_HANDLE *di spat cher _handl e,

NWDS_APPLTHREAD_PROC wor ker _t hread) ;

Parameter Input | Output Description

ext_pub_name The publish name to which remote client applications
connect. The publish name (a NULL-terminated string) is

a protocol group in the application's INI file.

v

int_pub_name The internal publish name that a worker thread uses to
communicate with the boss thread. This logical name (a
NULL-terminated string) is a protocol group in the

application's INI file.

The publish name that an external program uses to send
management requests to the boss thread. The boss
thread can return statistics and be instructed to shut
down gracefully. The public name (a NULL-terminated
string) is a protocol group in the application's INI file.

ctrl_pub_name

The address of a context area that is passed to each
worker thread upon startup.

applcontext

dispatcher_handle The address where the handle for the control connection
will be stored. nwds_dispatcher_stats and
nwds_dispatcher_stop use this handle as a parameter.

worker_thread A pointer to the worker thread's processing routine of

type NWDS_APPLTHREAD_PROC.

January 2003 27

NWDS_BAD_PARAMETER

III NetWeave API Reference Manual Version 2.0
L]
Return Code (output)
Return code Description
NWDS_SUCCESSFUL The call completed successfully.

You are trying to call a function but one of your parameters
is out of range.

NWDS_NO_MEMORY

Could not allocate enough memory to pass parameters to
the boss thread.

NWDS_NOT_IMPLEMENTED

The function is not available on the current platform.

NWDS_NOT_INITIALIZED

All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_NOTHREAD

Could not create a boss thread. Platform is not threaded.

NWDS_OPERATION_FAILED

The call did not complete successfully.

Related Functions

nwds_di spat cher _st at s onpage 30.

nwds_di spat cher _st op on page 32.

January 2003

I

NetWeave API| Reference Manual

Version 2.0

January 2003

29

NetWeave API| Reference Manual Version 2.0

NWDS_DISPATCHER_STATS

This function, which isincluded in all NetWeave rel eases, retrieves the following statistics from the
Dispatcher:

The number of active worker threads
The number of messages transmitted and received since startup

The nwds_di spat cher _st at s cal is synchronous and does not take an item list.

NWDS_ERRNO nwds_di spat cher _stats

(N\WDS_HANDLE di spat cher _handl e,
i nt *num_t hr eads,
i nt *num_nmessages) ;
Parameter Input | Output Description
dispatcher_handle v The handle returned from nwds_dispatcher_create.
num_threads v The address of an integer that will receive the

number of active worker threads associated with the
dispatcher_handle.

num_messages v The address of an integer that will receive the
number of messages that have passed through the
boss thread.

Return Code (output)

Return code Description
NWDS_BAD_PARAMETER NULL pointers were passed as arguments.
NWDS_NO_MEMORY Could not allocate enough memory to pass parameters to the

boss thread.
NWDS_NOT_IMPLEMENTED The function is not available on the current platform.
NWDS_NOTHREAD Could not create a boss thread. Platform is not threaded.
NWDS_OPERATION_FAILED The call did not complete successfully.
NWDS_SUCCESSFUL The call completed successfully.

Related Functions

nwds_di spat cher _cr eat e on page 27.
nwds_di spat cher _st op on page 32.

January 2003 30

I

NetWeave API| Reference Manual

Version 2.0

January 2003

31

III NetWeave API| Reference Manual Version 2.0
NWDS_ DISPATCHER_STOP
This function, which isincluded in al NetWeave releases, terminates a Dispatcher created by

nwds_di spat cher _creat e. Thenwds_di spat cher _st op cal is synchronous and does not

take an item list.

NWDS_ERRNO nwds_di spat cher _st op

(N\WDS_HANDLE

di spat cher _handl e) ;

Parameter Input

Output Description

dispatcher_handle v

The handle that nwds_dispatcher_create returns.

Return Code (output)

Return code

Description

NWDS_BAD_PARAMETER

NULL pointers were passed as arguments.

NWDS_NO_MEMORY

Could not allocate enough memory to pass parameters to the
boss thread.

NWDS_NOT_IMPLEMENTED

The function is not available on the current platform.

NWDS_NOT_INITIALIZED

All NetWeave functions must be called after calling nwds_init()
and before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

NWDS_NOTHREAD

Could not create a boss thread. Platform is not threaded.

NWDS_OPERATION_FAILED

The call did not complete successfully.

NWDS_SUCCESSFUL

The call completed successfully.

Related Functions

nwds_di spat cher _cr eat e on page 27.

nwds_di spat cher _st at s on page 30.

January 2003

32

I

NetWeave API| Reference Manual

Version 2.0

January 2003

33

III NetWeave AP| Reference Manual Version 2.0
*
NWDS_ ERROR_TEXT
This function, which is included in all NetWeave releases, converts a NetWeave status code into a text

string. Thenwds_error _t ext cal issynchronous and does not take an item list.

NWDS_ERRNO nwds_error _t ext

(N\DS_ERRNO st at us_code,
char *text_string);
Parameter Input | Output Description
status_code v A value returned from a NetWeave function call.
text_string v A line of text (a NULL-terminated string) that tells users
what the status code means.

Return Code (output)

Return code Description
NWDS_SUCCESSFUL The call completed successfully.
NWDS_BAD_PARAMETER Status code represents a non-NetWeave error code.

Related Functions

nwds_nsgl og on page 126.

January 2003 34

I

NetWeave API| Reference Manual

Version 2.0

January 2003

35

This function starts a process on a designated system, and completes when the process starts. If the
process starts successfully, usether et urn_I i st item list to find out more about it. If the process

fallsto start, the return code tells you why. The nwds__execut e function is included in all NetWeave
releases.

III NetWeave API Reference Manual Version 2.0
NWDS EXECUTE

|

NOTE: To stop a process started by nwds_execut e, usenwds_st op.
To execute a process on a remote system, you can use either nwds_bat ch or nwds_execut e. If the

process will do something and then stop, use nwds__bat ch. If the process runs in the background, or
needs to continue running indefinitely, use nwds_execut e.

NWDS_ERRNO nwds_execut e

(char *i mage_name,
NWDS | TEM LI ST *control _list,
NWDS | TEM LI ST *return_list,
NWDS_CALL_BACK *cal | _back);
Parameter Input | Output Description
image_name v The name (a NULL-terminated string) of the executable file you

want to run, either a logical name or a physical name
expressed in the syntax of the target system.

If it's a logical name, a group in the process INI file must
contain a translation to a physical name.

The first part of the physical name may be the NetWeave node
name of the target system where the file is located. If there is
no node prefix, NetWeave looks for the file on the local system.

control_list v A pointer to an array of system-specific runtime parameters.
(See “The Control_list Parameters” on the next page.)
return_list v A pointer to an array of system-specific parameters that

describe the program (job). For more information, see “Using
Return_list to Stop a Remote Process” on page 38.

call_back A pointer to a callback structure that contains the function that
will be called when nwds_execute completes. If NULL, the call
is synchronous.

January 2003 36

NetWeave API| Reference Manual

Return Code (output)

Version 2.0

Return code

Description

NWDS_NOT_INITIALIZED

All NetWeave functions must be called after calling nwds_init()
and before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

For more information about the return codes, see page 229.

The Control_List Parameters

(For CICSonly) Towriteto aqueue, use N\VDS_Cl CS_QUEUE and NWDS_Cl CS_REQ DATA. Use
the other N\\DS_Cl CS parameterswith EXEC Cl CS START.

The table below lists the system-specific cont r ol _I i st runtime parameters:
Platform Parameter Description
MVS/CICS NWDS_CICS_IMAGE_FLAG A long; indicates whether you are writing to

TDQ or using CICS START.

NWDS_CICS_REQID

A string; REQID field value.

NWDS_CICS_REQ_DATA

An array of bytes; the data to pass to the task.

NWDS_CICS_REQ_FLAG

A long; flag if data has FMH format.

NWDS_CICS_TIME_FLAG

A long; flag AFTER or AT time.

NWDS_CICS_HOURS

A long; hours value.

NWDS_CICS_MINUTES

A long; minutes value.

NWDS_CICS_SECONDS

A long; seconds value.

NWDS_CICS_RTRANSID

A string; RTRANSID to pass to started task.

NWDS_CICS_RTERMID

A string; RTERMID to pass to started task.

NWDS_CICS_QUEUE

A string; queue name to pass to started task.

DEC

NWDS_VMS_DELAY_TIME

A long; the number of seconds to wait after
sys$creprc finishes testing that the process is
still active.

NWDS_VMS_DETACHED

A long; if it is non-zero, run the job in the
background.

NWDS_VMS_PRIORITY

An integer; the priority at which the job runs.

NWDS_VMS_PROCESS_NAME

A byte array; the name of the process.

NWDS_VMS_WAIT_ATTEMPTS

Not currently used.

(continued)

January 2003

37

Guardian assign message.

III NetWeave API| Reference Manual Version 2.0
*
Platform Parameter Description
Tandem | NWDS_TAN_ASSIGNMSG A byte array; you may define more than one

NWDS_TAN_HOMETERM A byte array; the home terminal of the process is
the default for stdin, stdout, and stderr.
NWDS_TAN_MEMORYPAGES An integer; the initial allocation of memory.
NWDS_TAN_PARAMMSG A byte array; a Guardian param message (you
may define more than one).
NWDS_TAN_PRIORITY An integer; the priority assigned to the process.
NWDS_TAN_PROCESSNAME A string; this is returned in the return_list, and may
be passed to nwds_stop.
NWDS_TAN_PROCESSOR An integer; the CPU in which the process will start.
NWDS_TAN_STARTUPMSG A byte array; the process' startup message.
UNIX NWDS_UNIX_COMMAND_ARGS A string; the runtime command arguments.
NWDS_UNIX_RETURN_PID A string; this is returned in the return_list and may

be passed to nwds_stop.

WIN32 NWDS_WIN32_COMMAND_ARGS | A string; the runtime command arguments.

NWDS_WIN32_RETURN_PID A string; this is returned in the return_list and may
be passed to nwds_stop.

Using Return_list to Stop a Remote Process

To stop aremote process, whether started with nwds_execut e or not, you must include the following
parameter(s) inthereturn_|l i st :

Platform Parameter Description

DEC NWDS_VMS_RETURN_NAME A byte array; the name you passed as
VMS_PROCESS_NAME.

NWDS_VMS_RETURN_PID A long integer; the VMS process ID.

Tandem NWDS_TAN_PROCESSNAME A string, in the format for passing to
nwds_stop.

UNIX NWDS_UNIX_RETURN_PID A string, in the format for passing to
nwds_stop.

WIN32 NWDS_WIN32_RETURN_PID A string, in the format for passing to
nwds_stop.

January 2003 38

I

|

NetWeave API| Reference Manual Version 2.0

NOTE: The underlying operating system call determines how nwds_execut e works. On some
systems, this call may return true even if the process did not really start. For example, on an VMS

system, if the process has quota or privilege problems, nwds_execut e will return
NVDS_ SUCCESSFUL even if the process did not start successfully.

Related Functions

nwds_bat ch on page 18

January 2003 39

I

NetWeave API| Reference Manual

Version 2.0

January 2003

40

III NetWeave API| Reference Manual Version 2.0
NWDS EXIT
This function, which isincluded in al NetWeave releases, shuts down any open connections and

releases al system resources. On some systems (such as Windows running TCP/IP), if you do not call

nwds_exi t, NetWeave can't tell the TCP/IP device driver to free any socket handles that NetWeave
may have alocated.

NOTE: Beforecalling nwds_i ni t again for any reason, you must first call nwds_exi t.
If you don’t, you will have memory lesks within the NetWeave application.

NWDS_ERRNO nwds_exit (void);

Return Code (output)

If nwds_exi t returns avaue other than NVDS_ SUCCESSFUL, there was an unrecoverable system
error.

Related Functions

nwds_sl eep on page 136.

nwds_sl eep_cal | back on page 138.
nwds_sl eep_cl ear _cal | back on page 141.
nwds_st op on page 164.

nwds_t i nmer_start onpage 169.

nwds_ti mer _st op onpage 172.

January 2003 41

I

NetWeave API| Reference Manual

Version 2.0

January 2003

42

III NetWeave API Reference Manual Version 2.0
NWDS_FILE_CLOSE
This function closes afile opened by an earlier call to nwds_fil e_open. Thenwds _fil e _cl ose
function is provided as part of NetWeave' s Data Server and/or Message Queueing options.

NOTE: Any filesthat nwds_f i | e_open openswill be closed automatically when the
application terminates, or if you call nwds_exi t.

NWDS_ERRNO nwds_fil e_cl ose

(N\\\DS_HANDL E file_handle,
NWDS | TEM LI ST *control _itens,
NWDS_CALL_BACK *cal | _back);
Parameter Input | Output Description
file_handle v The handle returned from a call to nwds_file_open.
control_items y Because nwds_file_close does not use control items,
control_items should be set to NULL.
call_back y A pointer to the callback structure. If NULL, the call is
synchronous.
Return Code (output)
Return code Description
NWDS_SUCCESSFUL The call completed successfully.
NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init()
and before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.
NWDS_NO_MEMORY The system is overloaded; process out of memory.
NWDS_PENDING The operation has been initiated successfully. Final status and
data will be delivered to the specified callback function.

For more information about the return codes, see page 229.

Related Functions

nwds_fil e _copy on page46.
nwds_fil e create onpaged48.
nwds_fil e_del et e onpage52

January 2003 43

III NetWeave API Reference Manual Version 2.0
L]

nwds_file_i nfo onpage55.

nwds_fil e_open on page59.

nwds_file_position onpage63.

nwds_fil e_read onpage67.
nwds_fil e_renove onpage 70.
nwds_fil e _update onpage73.
nwds file wite onpage76.

January 2003

I

NetWeave API| Reference Manual

Version 2.0

January 2003

45

III NetWeave API Reference Manual Version 2.0
NWDS_FILE COPY
Thenwds_fil e_copy function copies afile from one system to another. This function is provided as
part of NetWeave's File Transfer option.

You may usenwds_fi | e_copy to transfer both text files and binary images. If the INI file contains
DDL entriesfor thefile, the data may be converted. Use record blocking to optimize transfer through
the communications layer. Text files are created on the destination system in a format compatible with

that system’s standard text editor (nwds_fi | e_copy does not overwrite non-empty destination files).

NWDS_ERRNO nwds_fil e_copy

(char *source_fil e_nane,
NWDS | TEM LI ST *source_itens,
char *destination_file_nane,
NWDS | TEM LI ST *destination_itens,
NWDS_CALL_BACK *cal | _back);
Parameter Input | Output Description
source_file_name v The name (a NULL-terminated string) of the file you

want to copy. The name can be either a logical name, or
a physical file name expressed in the syntax of the
target system.

If it's a logical name, a group in the process INI file must
contain a translation to a physical name.

The first part of the physical name may be the
NetWeave node name of the target system from which

the file will be copied. If there is no node prefix,
NetWeave looks for the file on the local system.

source_items y A pointer to an array of system-specific parameters.
See “Considerations” on the next page.
destination_file_name y The name (a NULL-terminated string) of the new file,

either a logical name or a physical file name expressed
in the syntax of the target system.

If it's a logical name, a group in the process INI file must
contain a translation to a physical name.

The first part of the physical name may be a NetWeave
node name of the system to which the file will be copied.
If there is no node prefix, NetWeave looks for the file on
the local system. If the destination file does not exist,
NetWeave creates the destination file.

destination_items y A pointer to a system-specific parameter.
See “Considerations” on the next page.
call_back y A pointer to the callback structure.

If NULL, the call is synchronous.

January 2003 46

III NetWeave API Reference Manual Version 2.0
L]
Return Code (output)
Return code Description
NWDS_SUCCESSFUL The call completed successfully.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_NO_MEMORY The system is overloaded; process out of memory.

NWDS_PENDING The operation has been initiated successfully. Final status
and data will be delivered to the specified callback function.

For more information about the return codes, see page 229.

Example

Windows copying afile from Tandem to Alpha/VMS:

nwds_file_copy (
“TANDEM : fil eA”,
source_itens,

“VAX::fileB",
target _itens,
NULL) ;

Considerations

Thesour ce_i t ens parameters specify the source platform’s file format (N\DS_FI LE_BLOCKI NG)
and avalid filetype (N\DS_FI LE_TYPE).

Source_items parameter Value Description

NWDS_FILE_BLOCKING NWDS_FILE_BLOCKING_ON NetWeave blocks logical records
into physical records.

NWDS_FILE_BLOCKING_OFF No blocking is done.

NWDS_FILE_TYPE NWDS_FILE_TYPE_C C file

NWDS_FILE_TYPE_FIFO FIFO file

NWDS_FILE_TYPE_LEGACY Legacy file (system-dependent)

January 2003 47

Type NetWeave definition Description

III NetWeave API Reference Manual Version 2.0
L]
||| The N\\DS_FI LE_TYPE vaue in turn determines which items are returned, as shown below:

C Files NWDS_CFILE_SHARING A logical value that defines the access mode:
NWDS_CFILE_READ_WRITE: read and write access
NWDS_CFILE_READ_ONLY: read-only access

NWDS_CFILE_WRITE_ONLY: write-only access
NWDS_CFILE_APPEND: write to the end of the file

NWDS_CFILE_FORMAT A logical value that characterizes the file:
NWDS_CFILE_TEXT: newline delineated text not
necessarily printable; uses fgets, fputs
NWDS_CFILE_BINARY: no format; uses fwrite, fread

NWDS_CFILE_VARIABLE: NetWeave special file type;
each record consists of a 2-byte length followed by data

FIFO NWDS_FIFO_SHARING A logical that defines what to do after a message is read:

NWDS_FIFO_READ_HOLD_POS: the current pointer is
not updated after a read

NWDS_FIFO_READ_NEW_POS: the current pointer is
changed after a read

NWDS_FIFO_APPEND_ONLY: messages are added to
the end of the file

Legacy If you need to copy legacy files between proprietary file systems, see netweave.h for
system-specific features.

For the destination system in the copy operation, dest i nati on_i t ens isanaogousto
source_itens.

Related Functions

nwds _fil e cl ose onpage43.
nwds_fil e_create onpage48.
nwds_fil e_del et e onpage52.
nwds_file_i nfo onpage55.
nwds _fil e_open on page?59.
nwds_fil e_position onpage63.
nwds_fil e _read onpage67.
nwds_fil e renove onpage 70.
nwds_fil e _update onpage73.
nwds_file_ wite onpage76.

January 2003 48

III NetWeave API Reference Manual Version 2.0
NWDS_FILE CREATE
Thenwds_fil e_creat e function creates afile. To define the new fil€' s characteristics, you need a

properly formatted item list. With an appropriate item list, nwds_f i | e_cr eat e can construct any

file type on the target system. Thenwds_f i | e_cr eat e function is provided as part of NetWeave's
Data Server and/or Message Queueing options.

NWDS _ERRNO nwds _file_create

(char *file_nane,
NWDS | TEM LI ST *control _itens,]
NWDS_CALL_BACK *cal | _back);
Parameter Input | Output Description
file_name v The name (a NULL-terminated string) of the file you want

to create. The name can be either a logical name, or a
physical file name expressed in the syntax of the target
system.

If it's a logical name, a group in the process INI file must
contain a translation to a physical name.

The first part of a physical name may be the NetWeave
node name of the target system where the file will be
created. If there is no node prefix, NetWeave will try to
create the file on the local system.

control_items A pointer to system-specific parameters that specify the

v file type and its characteristics. See “Considerations”
below.
call_back v A pointer to the callback structure. If NULL, the call is
synchronous.
Return Code (output)
Return code Description
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling

nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

For more information about the return codes, see page 229.

January 2003 49

III NetWeave API Reference Manual Version 2.0
L]
Considerations
Thecont rol _i t ens parameter contains one of more of the following system-specific parameters

that indicate avalid file type, N\\DS_FI LE_TYPE, for the destination platform:
- N\\DS_FI LE_TYPE_C (Cfile)
- NWDS_FI LE_TYPE_FI FO (FIFOfile)
NDS_FI LE_TYPE_LEGACY (Legacy file, system-dependent)

Type NetWeave definition Description
C file NWDS_CFILE_EOF A long; the number of bytes in the file.
FIFO NWDS_FIFO_MAX_SEGMENTS | An integer; the number of segments in the file.
NWDS_FIFO_SEGMENT_SIZE An integer; the number of bytes in a segment.

Legacy For system-specific features when creating a legacy file in a proprietary file system,
please see netweave.h.

Related Functions

nwds_file cl ose onpage43.
nwds_fil e_copy on page46.
nwds_fil e_del et e onpage52.
nwds_file_i nfo onpage55.
nwds _fil e_open on page?59.
nwds_fil e_position onpage63.
nwds_fil e _read onpage67.
nwds_fil e_renove onpage 70.
nwds _fil e update onpage73.
nwds_file wite onpage76.

January 2003

I

NetWeave API| Reference Manual

Version 2.0

January 2003

51

III NetWeave API Reference Manual Version 2.0
NWDS_FILE DELETE
This function deletes the record or row entry at the current file position. Thenwds _fil e_del et e

function is provided as part of NetWeave' s Data Server option.

NWDS_ERRNO nwds_fil e_del ete

(N\\DS_HANDLE file_handle,

NWDS | TEM LI ST *control _itens,

NWDS CALL_BACK *cal | _back);

Parameter Input | Output Description
file_handle v The handle returned from a call to nwds_file_open.
control_items v A pointer to an array of system-specific parameters.

To ensure transaction protection for Tandem, use
NWDS_TP_HANDLE with a TP handle that was returned
from a call to NWDS_TP_START.

call_back v A pointer to the callback structure. If NULL, the call is
synchronous.
Return Code (output)
Return code Description
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling

nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

For more information about the return codes, see page 229.

Related Functions

nwds_file_cl ose onpage43.
nwds_fil e_copy on page46.
nwds_fil e _create onpaged48.
nwds_fil e info onpageb55.
nwds_fil e_open on page59.
nwds_file_position onpage63.

January 2003 52

III NetWeave API Reference Manual Version 2.0
L]

nwds_file_read onpage67.

nwds_fil e _renove onpage 70.

nwds_fil e update onpage73.

nwds_file wite onpage76.

January 2003

I

NetWeave API| Reference Manual

Version 2.0

January 2003

54

Illl

NetWeave API Reference Manual Version 2.0
NWDS_FILE_INFO
This function retrieves the information you requested about a particular file. The file does not have to be

open. Thenwds_fi |l e_i nfo functionis provided as part of NetWeave' s Data Server and/or
Message Queue options.

Before the cdll, to specify which information you need from the file, place the types of the requested

itemsinther et urn_i t ens list structure. If the call is asynchronous, use persistent memory to
receive the values of the requested information. Do not declare return items on the local stack. Place the
addresses of these locations for the returned information in the item list. When the function call
completes, NetWeave copies the vaues of the items to the specified locations.

NWDS_ERRNO nwds_file_info

(char *file_nane,
NWDS | TEM LI ST *control _itens,
NWDS | TEM LI ST *return_itens,
NWDS_CALL_BACK *cal | _back);
Parameter Input | Output Description
file_name v The name (a NULL-terminated string) of the file whose

information you want to retrieve. The name can be either a
logical name, or a physical file name expressed in the syntax
of the target system.

If it's a logical name, a group in the process INI file must
contain a translation to a physical name.

The first part of a physical name may be the NetWeave node
name of the target system where the file is located. If there is
no node prefix, NetWeave looks for the file on the local
system.

control_items A pointer to an array of system-specific parameters that
modify the default operation of this function. For more
information, see “Considerations” on the next page.

A pointer to an array of system-specific parameters.
See “Considerations” on the next page.

return_items

call_back A pointer to the callback structure. If NULL, the call is
synchronous.

January 2003 55

III NetWeave API| Reference Manual Version 2.0
*
Return Code (output)
Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init()
and before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

For more information about the return codes, see page 229.

Considerations

Forcontrol _itens,the N\\DS_FI LE_TYPE determines which items are returned:
NWDS_FI LE_TYPE_C (Cfile)
NWDS_FI LE_TYPE_FI FO (FIFOfile)
NWDS _FI LE_TYPE_LEGACY (Legacy file, system-dependent)

Each file type can return the following:

File type NetWeave definition Description
C file NWDS_CFILE_EOF The number of bytes in the file.
FIFO NWDS_FIFO_DATA_SIZE Number of bytes in a segment (the same as

the value NWDS_FIFO_SEGMENT_SIZE
provided in NWDS_FILE_CREATE).

NWDS_FIFO_SEGMENT_COUNT Number of segments in use in a queue.

NWDS_FIFO_NUMBER_RECORDS | Number of logical records (not segments) in
the queue.

NWDS_FIFO_FREE_SEGMENTS Number of free segments in a queue.

Legacy For system-specific features when querying legacy files in a proprietary file system,
please see netweave.h.

Related Functions

nwds_file cl ose onpage43.
nwds_fil e_copy on page46.
nwds_fil e _create onpage48.
nwds_fil e_del et e onpage52.
nwds_fil e _open on page?59.

January 2003 56

III NetWeave API Reference Manual Version 2.0
L]

nwds_fil e_position onpage63.

nwds_file_read onpage67.

nwds_fil e renove onpage 70.

nwds_fil e_update onpage73.
nwds_file_wite onpage76.

January 2003

I

NetWeave API| Reference Manual

Version 2.0

January 2003

58

file resides determine how afileis opened. To set any other file open conditions, use an item list with
item types and values appropriate for the target file system.

III NetWeave API Reference Manual Version 2.0
NWDS_FILE_OPEN
This function opens afile using itslogica or physical name. The file type and the system on which the

Thenwds_fil e_open functionis provided as part of NetWeave' s Data Server and/or Message
Queue options.

NWDS_ERRNO nwds_fil e_open

(char *file_nane,
NWDS_HANDLE *fil e_handl e,
NWDS | TEM LI ST *control _itens,
NWDS_CALL_BACK *cal | _back);
Parameter Input | Output Description
file_name v The name (a NULL-terminated string) of the file you want
to open. The name may be either a logical name, or a
physical file name expressed in the syntax of the target
system.
If it's a logical name, a group in the process INI file must
contain a translation to a physical name.
The first part of a physical name may be the NetWeave
node name of the target system where the file is located. If
there is no node prefix, NetWeave will look for the file on
the local system.
file_handle v The identifier to use for subsequent operations on this file.
control_items v A pointer to an array of system-specific parameters. For
more information, see “Considerations” on the next page.
call_back v A pointer to the callback structure. If NULL, the call is
synchronous.
Return Code (output)
Return code Description
NWDS_PENDING The operation was initiated successfully. Final status and
data will be delivered to the specified callback function.

For more information about the return codes, see page 229.

January 2003 59

III NetWeave API Reference Manual Version 2.0
L]
Considerations
Thecont rol _i t ens parameter points to the parameters that specify the source platform’s file format

(NWDS_FI LE_BLOCKI NG) and valid file type (\DS_FI LE_TYPE).

control_items parameter Value Description

NWDS_FILE_BLOCKING NWDS_FILE_BLOCKING_ON NetWeave blocks logical records
into physical records.

NWDS_FILE_BLOCKING_OFF No blocking is done.

NWDS_FILE_TYPE NWDS_FILE_TYPE_C C file

NWDS_FILE_TYPE_FIFO FIFO file

NWDS_FILE_TYPE_LEGACY Legacy file (system-dependent)

The N\VDS_FI LE_TYPE vaue determines which items are returned, as shown below:

Type NetWeave definition Description

C Files NWDS_CFILE_SHARING A logical; defines the access mode:
NWDS_CFILE_READ_WRITE: read and write access

NWDS_CFILE_READ_ONLY: read-only access
NWDS_CFILE_WRITE_ONLY: write-only access
NWDS_CFILE_APPEND: write to the end of the file

NWDS_CFILE_FORMAT A logical; characterizes the file:

NWDS_CFILE_TEXT: newline delineated text, not
necessarily printable; uses fgets, fputs
NWDS_CFILE_BINARY: no format; uses fwrite, fread

NWDS_CFILE_VARIABLE: a NetWeave special file
type, where each record consists of a 2-byte length
followed by the data

FIFO NWDS_FIFO_SHARING A logical; defines what to do after a message is read:
NWDS_FIFO_READ_HOLD_POS: the current pointer
is not updated after a read.
NWDS_FIFO_READ_NEW_POS: the current pointer is
changed after a read.

NWDS_FIFO_APPEND_ONLY: messages are added
to the end of the file.

Legacy For system-specific features when querying legacy files in a proprietary file system,
please see netweave.h.

January 2003 60

III NetWeave API| Reference Manual Version 2.0
*
||| Related Functions

nwds_file_cl ose onpage43.
nwds_fil e_copy on page46.
nwds_file create onpaged48.
nwds_fil e_del et e onpage52
nwds_file_i nfo onpage55.
nwds_fil e _position onpage63.
nwds file read onpage67.
nwds_fil e_renove onpage 70.
nwds_fil e _updat e onpage73.
nwds_file_ wite onpage76.

January 2003

I

NetWeave API| Reference Manual

Version 2.0

January 2003

62

This function sets or resets the record position in thefile. Thenwds_fil e _positi on functionis
provided as part of NetWeave' s Data Server and/or M essage Queue options.

III NetWeave API Reference Manual Version 2.0
NWDS_ FILE POSITION

|

The parameters for setting the pointer are passed in the control item list structure. For certain types of

files, nwds_fil e_posi tion canreturninformation about the current record pointer or file
position. Before making the call, place the types of the items for which you are requesting information
inthereturn item list structure. When the call returns, the values of the items are copied to the

designated item locations. For more information, scenwds_fil e i nf o on page 55.

For message queues, if you cal nwds_fi | e_posi ti on with an empty item list, it advances the head
pointer of a message queue. For more information about transaction processing with message queues,
see “Message Queue Files’ on page 193.

NWDS_ERRNO nwds_fil e_position

(NVDS_HANDLE file_handl e,

NWDS | TEM LI ST *control _itens,

NWDS | TEM LI ST *return_itens,

NWDS_CALL_BACK *cal | _back);

Parameter Input | Output Description
file_handle v The identifier returned from a call to nwds_file_open.
control_items y A pointer to an array of system-specific parameters. For

more information, see “Considerations” below.

return_items y A pointer to an array of system-specific parameters. Include

in the return item list the types for which you want values to
be returned, and the addresses of locations to which values
will be copied. See “Considerations” below.

call_back A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description
NWDS_PENDING The operation has been initiated successfully. Final status
and data will be delivered to the specified callback function.
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling

nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

For more information about the return codes, see page 229.

January 2003 63

For unstructured files (no concept of arecord), use arelative byte address.

For structured files, positioning is by relative record number. File position is system and
filetype-specific.

|

NetWeave API Reference Manual Version 2.0
Considerations
For files that don’'t have keys and indices, addressing can be done in either of two ways.

For file structures with keys and indices, item types supported on the host platform can define an
individual record or the first of a sequential set of records. Although item types differ for each host, dl
legacy file systems that support indexed access use an item type to specify each of the following:

- Which index to use
- Which key value to compare
How to compare the key with the keysin the record set

Thecontrol _it ens parameter gives NetWeave additiona information about the exact positioning
requirements for the file system being accessed.

File type Name Description

C Files NWDS_CFILE_FTELL A long; the current relative byte address in a
CFILE flat file.

NWDS_CFILE_SEEK_OFFSET A long; the new byte position relative to the
starting point specified by SEEK_TYPE.

NWDS_CFILE_SEEK_TYPE Tells which starting point to use.
NWDS_CFILE_SEEK_SET Start from the beginning of the file.
NWDS_CFILE_SEEK_CURRENT | Start from the current byte position.
NWDS_CFILE_SEEK_END Start relative to the end of the file.
FIFO NWDS_FIFO_SEEK_OFFSET An integer; the number of messages to advance
or retreat. The default value is -1, as in “take 1
off”.

Use a positive value to reset the head pointer to
reread previous messages (put it back on the
queue). Use a negative value to remove
messages from the queue.

Legacy For system-specific features when querying legacy files in a proprietary file system,
please see netweave.h.

Related Functions

nwds_file_cl ose onpage43.
nwds fil e _copy on page46.
nwds_fil e_create onpage48.
nwds_fil e_del et e onpage52.

January 2003 64

III NetWeave API Reference Manual Version 2.0
L]

nwds_file_i nfo onpage55.

nwds_fil e_open on page59.

nwds _file read onpage67.

nwds_fil e_renove onpage 70.
nwds_fil e _update onpage73.
nwds_file_ wite onpage76.

January 2003

I

NetWeave API| Reference Manual

Version 2.0

January 2003

66

III NetWeave API Reference Manual Version 2.0

L]
NWDS_FILE_READ
This function retrieves the record or row at the current file pointer. Thenwds _fil e_read function
is provided as part of NetWeave' s Data Server and/or M essage Queue options.

Where supported, record locking isindicated in an item type passed in the item list structure. If an
empty item list is passed, the record is not locked. Depending on the properties of the underlying file
system, NetWeave may return the argument to the callback for asynchronous invocations of

nwds_fil e_read. Some hosts support read-only access that bypasses another user's lock. To lock or
unlock arecord, please see netweave.h for specific information for each platform and type of file
structure.

NWDS_ERRNO nwds_fil e_read

(N\\DS_HANDL E file_handl e,

NWDS_SI ZE buffer_size,

voi d *puffer,

NWDS_SI ZE *return_size,

NWDS | TEM LI ST *control _itens,

NWDS | TEM LI ST *return_itens,

NWDS_CALL_BACK *cal | _back);

Parameter Input | Output Description

file_handle v The identifier returned from a call to nwds_file_open.
buffer_size v The maximum number of bytes that may be copied to the

buffer (next parameter). For a record-oriented file, one
record is read from the file. If it is bigger than buffer_size,
NWDS_DATA OVERFLOW is returned and no data is
transferred. For a flat file, up to buffer_size bytes are
read from the file.

buffer v The address of the array where the record is returned.
return_size v The actual number of bytes copied to the buffer.
control_items y A pointer to an array of system-specific parameters.

When positioning to records in files in proprietary file
systems, see netweave.h for system-specific features
that affect how the control_items parameter is used.

return_items A pointer to an array of system-specific parameters. In
the return item list, include the types for which values will
be returned and the addresses of locations to which
values will be copied.

call_back A pointer to the callback structure. If NULL, the call is
synchronous.

January 2003 67

III NetWeave API Reference Manual Version 2.0
L]
Return Code (output)
Return code Description
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling

nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

If another user locks the record, the error NWDS_RECORD | S_LOCKED isreturned. NetWeave does
not wait for the record to become unlocked. For more information about the return codes, see page 229.

Related Functions

nwds_file_cl ose onpage43.
nwds fil e _copy on page46.
nwds_file_create onpaged48.
nwds_fil e_del et e onpage52.
nwds fil e i nfo onpageb55.
nwds_fil e_open on page59.
nwds_fil e_position onpage63.
nwds_file_renove onpage 70.
nwds_fil e update onpage73.
nwds_file wite onpage76.

January 2003 68

I

NetWeave API| Reference Manual

Version 2.0

January 2003

69

III NetWeave API Reference Manual Version 2.0

NWDS_ FILE_ REMOVE

This function deletes aremote file. It failsif any process has the file open. Thenwds _fil e _renove
function is provided as part of NetWeave' s Data Server and/or M essage Queue options.

NWDS_ERRNO nwds_fil e_renove

(char *file_nane,
NWDS | TEM LI ST *control _itens,
NWDS CALL_BACK *cal | _back);
Parameter Input | Output Description
file_name y The name (a NULL-terminated string) of the file to

remove. The name may be either a logical name, or a
physical file name expressed in the syntax of the target
system.

If it's a logical name, a group in the process INI file must
contain a translation to a physical name.

The first part of a physical name may be a NetWeave
node name that indicates the target system where the file
is located. If there is no node prefix, NetWeave will look
for the file on the local system.

A pointer to an array of system-specific parameters. Use
control _itens to specify the type of file
(NWDS_FILE_TYPE) you intend to remove:

. NWDS_FILE_TYPE_C (C file)
. NWDS_FILE_TYPE_FIFO (FIFO file)

- NWDS_FILE_TYPE_LEGACY (Legacy file, system-
dependent)

control_items

A pointer to the callback structure. If NULL, the call is
synchronous.

call_back

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

For more information about the return codes, see page 229.

January 2003 70

III NetWeave AP| Reference Manual Version 2.0
*

Related Functions

nwds_file_cl ose onpage43.

nwds_fil e_copy on page46.

nwds_file create onpaged48.
nwds_fil e_del et e onpage52
nwds_file_i nfo onpage55.
nwds_fil e_open on page59.
nwds_fil e position onpage63.
nwds_fil e_read onpage67.
nwds_fil e _update onpage73.
nwds_file_ wite onpage76.

January 2003

I

NetWeave API| Reference Manual

Version 2.0

January 2003

72

III NetWeave API| Reference Manual Version 2.0
*

NWDS_FILE_UPDATE

This function changes the data fields in an existing record or row. Thenwds_fi | e_updat e function
is provided as part of NetWeave' s Data Server option.

NWDS_ERRNO nwds_fil e_update

(N\\DS_HANDLE file_handl e,

NWDS_SI ZE buf fer_size,

voi d *puffer,

NWDS | TEM LI ST *control _itens,

NWDS_CALL_BACK *cal | _back);

Parameter Input | Output Description

file_handle v The handle returned from a call to nwds_file_open.
buffer_size v The number of bytes to be copied from the buffer (next

parameter in this table, below).

For a record-oriented file, if you try to exceed the
maximum record size specified for the file, NetWeave
returns NWDS_DATA_OVERFLOW. For a flat file,
buffer_size bytes are replaced in the file.

buffer v The address of the array that contains the changed data.
control_items v A pointer to an array of system-specific parameters.
call_back v A pointer to the callback structure. If NULL, the call is
synchronous.
Return Code (output)
Return code Description
NWDS_NOT_IMPLEMENTED The function is not available on the current platform.
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling

nwds_init() and before calling nwds_exit(). Call
nwds_init() and re-issue the NetWeave function call.

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

If another user locks the record, the error NWNDS_RECORD | S LOCKED is returned. NetWeave does
not wait for the record to become unlocked. For more information about the return codes, see page 229.

January 2003 73

III NetWeave AP| Reference Manual Version 2.0
*

Related Functions

nwds_file_cl ose onpage43.

nwds_fil e_copy on page46.

nwds_file create onpaged48.
nwds_fil e_del et e onpage52
nwds_file_i nfo onpage55.
nwds_fil e_open on page59.
nwds_fil e position onpage63.
nwds_fil e_read onpage67.
nwds_fil e_renove onpage 70.

nwds_file wite onpage76.

January 2003

I

NetWeave API| Reference Manual

Version 2.0

January 2003

75

III NetWeave API Reference Manual Version 2.0
NWDS_FILE WRITE
This function adds a new record to afileor arow to atable. Thenwds _file wite functionis
provided as part of NetWeave' s Data Server and/or M essage Queue options.

NWDS_ERRNO nwds_file write

(N\\DS_HANDLE file_handl e,
NWDS_SI ZE buf fer_size,
voi d *puf f er,

NWDS_| TEM LI ST *control _itenmns,

NWDS_CALL_BACK *cal | _back);

Parameter Input | Output Description

file_handle v The handle returned from a call to nwds_file_open.
NOTE: To use nwds_file_open, you must have the Data
Server option.

buffer_size v The number of bytes to be copied from the buffer (the
next parameter, below). For a record-oriented file, if you
try to exceed the maximum record size specified for the
file, NWDS_DATA_OVERFLOW is returned. For a flat file,
buffer_size bytes are appended to the file.

buffer v The address of the array that contains the new data.

control_items v A pointer to an array of system-specific parameters.

call_back v A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code (output)
Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call
nwds_init() and re-issue the NetWeave function call.

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

For arecord-oriented file, the error NADS_DUPLI CATE_KEY is returned when you try to write a
record that contains a key value that matches one for an index that does not permit duplicates. For more
information about the return codes, see page 229.

January 2003 76

III NetWeave AP| Reference Manual Version 2.0
*

Related Functions

nwds_file_cl ose onpage43.

nwds_fil e_copy on page46.

nwds_file create onpaged48.
nwds_fil e_del et e onpage52
nwds_file_i nfo onpage55.
nwds_fil e_open on page59.
nwds_fil e position onpage63.
nwds_fil e_read onpage67.
nwds_fil e_renove onpage 70.

nwds_fil e_update onpage73.

January 2003

I

NetWeave API| Reference Manual

Version 2.0

January 2003

78

Illl

NetWeave API Reference Manual Version 2.0
NWDS_INI_DELETE_NAME
This function, which isincluded in all NetWeave releases, deletes a token statement from an
application’s user group. The token USER_NANME_GROUP identifies the calling application’s group in
the INI file. You can dso use USER_NAVE _GROUP = xxXx to supply adifferent INI file group for
housing application-specific parameters. A token statement has the following syntax:

t oken = val ue

Thenwds_i ni _del et e_nane function does not modify the INI file, only the runtime contents of
the user group.

NWDS_ERRNO nwds_i ni _del et e_nanme

(char *t oken_nane) ;
Parameter Input Output Description
token_name v The name of the token to remove from the user group.
The name is a NULL-terminated string.

Return Code (output)

Return code Description
NWDS_NAME_NOT_FOUND An error occurred.
NWDS_SUCCESSFUL The token was removed.

For more information about the return codes, see page 229.

Related Functions

nwds_i ni _get _name onpage 81.
nwds_i ni _put _name onpage 86.

January 2003 79

I

NetWeave API| Reference Manual

Version 2.0

January 2003

80

III NetWeave API| Reference Manual Version 2.0
NWDS_INI_GET_INT
This function, which isincluded in al NetWeave releases, returns the numeric value from the specified

token statement from an application’s user group. The token USER_NAME _GROUP identifies the user
group in the application’s root group. A token statement has the following syntax:

t oken = val ue

Thenwds_i ni _get _i nt function does not access the INI file, just the values from the runtime
contents of the user group.

NWDS_ERRNO nwds_i ni _get i nt

(char *| ookup_nane,
i nt *returned_val ue,
i nt defaul t _val ue);
Parameter Input | Output Description
lookup_name v The name of the token to be looked up. The name is a
NULL-terminated string.
returned_value v The token value.
default_value v If the lookup_name is not found, the returned_value is
set to default_value.

Return Code (output)

Return code Description

NWDS_NAME_NOT_FOUND An error occurred.

NWDS_BAD_PARAMETER The USER_NAME_GROUP was not specified or was
not found in the registered INI file

NWDS_DATA_OVERFLOW Supplied buffer was not large enough to hold value.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call
nwds_init() and re-issue the NetWeave function call.

NWDS_SUCCESSFUL The token was found.

For more information about the return codes, see page 229.

Related Functions

nwds_i ni _del et e_nane on page 79.

January 2003 81

{

NetWeave API| Reference Manual

nwds_i ni _put _name on page 86.

Version 2.0

January 2003

82

statement in an application’s user group. The token USER_ NAME_GROUP identifies the user group in
the application’s root group. A token statement has the following syntax:

III NetWeave API| Reference Manual Version 2.0
NWDS_INI_GET_NAME
This function, which isincluded in al NetWeave releases, returns the value from the specified token

t oken = val ue

Thenwds_i ni _get _nane function does not accessthe INI file, just the values from the runtime
contents of the user group.

NWDS_ERRNO nwds_i ni _get _nane

(char *| ookup_nanme,

NWDS_SI ZE buf fer_si ze,

char *returned_val ue);

Parameter Input | Output Description
lookup_name v The name of the token to be looked up. The name is a
NULL -terminated string.

buffer_size v The maximum size allocated for the return string.
returned_value v The returned value associated with the lookup_name.

Return Code (output)

Return code Description
NWDS_NAME_NOT_FOUND An error occurred. Desired name not found.
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling

nwds_init() and before calling nwds_exit(). Call
nwds_init() and re-issue the NetWeave function call.

NWDS_BAD_ PARAMETER The USER_NAME_GROUP was not specified or was
not found in the registered INI file

NWDS_ DATA_OVERFLOW Supplied buffer was not large enough to hold value.

NWDS_SUCCESSFUL The token was found.

For more information about the return codes, see page 229.

Related Functions

nwds_i ni _del et e_nane on page 79.

nwds_i ni _put _name on page 86.

January 2003 83

I

NetWeave API| Reference Manual

Version 2.0

January 2003

84

I

NetWeave API| Reference Manual

Version 2.0

January 2003

85

Illl

NetWeave API Reference Manual Version 2.0
NWDS_INI_PUT_NAME
Thenwds_i ni _put nane function, which isincluded in al NetWeave releases, inserts a new token

statement in the application’s user group. The token USER_NAVE _GROUP identifies the user group in
the application’s root group. A token statement has the following syntax:

t oken = val ue

Thenwds_i ni _put _name function does not access the INI file. Instead, it inserts new entries in the
runtime contents of the user group.

NWDS_ERRNO nwds_i ni _put _name

(char *t oken,

char *val ue);

Parameter Input | Output Description
token v The token name is a NULL-terminated string.
value v The value is a NULL-terminated string.

Return Code (output)

Return code Description
NWDS_NO_MEMORY The system is overloaded; process out of memory.
NWDS_SUCCESSFUL The token statement was added.

For more information about the return codes, see page 229.

Related Functions

nwds_i ni _del et e_nane on page 79.
nwds_i ni _get _name on page8l.

January 2003 86

I

NetWeave API| Reference Manual

Version 2.0

January 2003

87

III NetWeave API Reference Manual Version 2.0

L]
NWDS INIT
This must be the first NetWeave function call for any program that uses the NetWeave API. The default
INI file name on platforms that support long file namesisnet weave. i ni . The default for other file

systemsis NV\DSI NI . The default group (or section) nameis MAI N. The nwds_i ni t functionis
included in al NetWeave releases.

NVWDS_ERRNO nwds_i ni t

(char *INI _file,
char *I'NI _group);
Parameter Input Output Description

INI_file v The name (a NULL-terminated string) of the INI file for this
program. If your application uses a sequence of INI files,
this is the first one (called the root INI file) that NetWeave
will use to resolve names and find communications
parameters.

INI_group y The name of the group in the root INI file where NetWeave
begins its searches. The name is a NULL-terminated
string.

Return Code (output)

Return code Description
NWDS_FILE_NOT_FOUND There is no INI file with this name.
NWDS_OPERATION_FAILED The call did not complete successfully.
NWDS_SUCCESSFUL The call completed successfully.

If nwds_i ni t returnsan error, it isimportant not to call nwds_exi t (nwds_i ni t cleansup after
itself). For more information about the return codes, see page 229.

Related Functions

nwds_i tem | oad_char on page 116.
nwds_item | oad_handl e onpage 118.
nwds_item | oad | ong on page 120.
nwds_item | oad_short on page122.

January 2003 88

III NetWeave API Reference Manual Version 2.0
NWDS IPC_ACCEPT
To acknowledge that is has accepted a connection, the passive end of a connection (the server) cals

nwds_i pc_accept to complete the setup of a connection with a client application. The
nwds_i pc_accept functionisincluded in al NetWeave releases.

If nwds_i pc_accept iscaled synchronoudly (i.e. completion=NULL), thenthecl i ent _handl e

isvalid when NVWDS_ SUCCESSFUL is returned. Otherwisethecl i ent _handl e isundefined and
invalid, but no further action is required to release the handle.

If nwds_i pc_accept iscaled asynchronoudly, thecl i ent _handl e isnot valid until the
completion callback is returned with N\DS_ SUCCESSFUL. If an error is returned from either
nwds_i pc_accept or the callback function, then the handle isinvdid, and it does not need to be
cleaned up vianwds_i pc_shut down.

Applications that communicate as peers may send unsolicited messages to each other a any time. To
receive a message asynchronously whenever your partner sends one, you must specify the

dat a_recei ved calback.

NWDS_ERRNO nwds_i pc_accept

(NWDS_HANDLE server _handl e,
NWDS_HANDLE *client_handl e,
NWDS | TEM LI ST *control _itens,
NWDS_CALL_BACK *conpl eti on,
NWDS_ CALL_BACK *dat a_r ecei ved);
Parameter Input | Output Description
server_handle v The handle that nwds_ipc_publish returns.
client_handle The identifier associated with the new connection. Use
this identifier to write messages to the other application.
control_items v A pointer to an array of system-specific parameters.
completion y A pointer to a callback structure that contains the function
that will be called when nwds_ipc_accept completes. If
NULL, the call is synchronous.
data_received v A pointer to the callback to be called each time the

application receives a message from the other
application.

NOTE: If data_received=NULL, your application cannot
receive unsolicited messages and must call
nwds_ipc_read each time it is ready to process an
incoming message. nwds_ipc_read will then suspend
until data is available.

January 2003 89

III NetWeave API| Reference Manual Version 2.0
*
Return Code (output)
Return code Description

NWDS_NOT_INITIALIZED | All NetWeave functions must be called after calling nwds_init() and
before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid, usually
because a file or connection was closed.

For more information about the return codes, see page 229.

Related Functions

nwds_sessi on_cl ose on page 133.
nwds_i pc_br oadcast on page 92
nwds_i pc_connect on page 95.
nwds_i pc_opti ons onpage 98.
nwds_i pc_publ i sh onpage 101
nwds_i pc_read on page 104.
nwds_i pc_regi st er onpage 107.
nwds_i pc_shut down on page 110.
nwds_i pc_wite onpagell3.

January 2003

I

NetWeave API| Reference Manual

Version 2.0

January 2003

91

III NetWeave API Reference Manual Version 2.0
NWDS IPC_BROADCAST
This function broadcasts a message to applications that have caled nwds_i pc_r egi st er toreceive

amessage. Thenwds_i pc_br oadcast function completes when the message is sent, as opposed to
nwds_i pc_wr i t e, which completes when the recipient receives the message. Because the sender
does not know (or care) whether any receivers read the message, a broadcast does not require an
acknowledgment. Thenwds_i pc_br oadcast function is provided as part of NetWeave' s Broadcast
option.

Applications that accept broadcast messages (receivers) register for broadcast messages by event type.
When a sender broadcasts a message of a particular type, areceiver isinterrupted only if it is a message
of an event type for which the receiver has registered.

Broadcast messages are delivered to the network through a NetWeave Agent. For efficiency, certain
resources associated with the session between the application and the agent are not released after each

broadcast. These resources will be recovered when the application issues nwds_sessi on_cl ose.

NOTE: Thenet weave. h vdue N\V\DS_MAX_USER_SI ZE determines the maximum length of
a broadcast message.

NWDS_ERRNO nwds_i pc_br oadcast

(char *broadcast _port,
NWDS_FI LTER_CLASS event _type,
NWDS_SI ZE buf fer_si ze,
voi d *puf fer,
NWDS | TEM LI ST *control _itens,
NWDS_CALL_BACK *cal | _back);
Parameter Input | Output Description
broadcast_port y The broadcast port is either a group in the INI file or a
physical name whose first part is a NetWeave node name.
If the port designates a group, the NAME statement in the
group may identify a physical name that contains a node
name. In either case, the node name designates a section
name in the INI file that describes how to reach a
NetWeave Agent that handles the broadcast.
event_type y A parameter that allows receivers to identify messages as
belonging to a class of messages known to the application.
buffer_size y The length of the message in the buffer (next parameter,
below). It may not exceed NWDS_MAX_USER_SIZE.
buffer v The address of the array that contains the message.
control_items v A pointer to an array of system-specific parameters.
call_back v A pointer to the callback structure. If NULL, the call is
synchronous.

January 2003 92

III NetWeave API Reference Manual Version 2.0
L]
Return Code (output)
Return code Description
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()

and re-issue the NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_sessi on_cl ose on page 133.
nwds_i pc_accept on page 89.
nwds_i pc_connect on page 95.
nwds_i pc_opti ons onpage 98.
nwds_i pc_publ i sh onpage 101
nwds_i pc_read on page 104.
nwds_i pc_regi st er onpage 107.
nwds_i pc_shut down on page 110.
nwds_i pc_wite onpagell3.

January 2003

I

NetWeave API| Reference Manual

Version 2.0

January 2003

94

III NetWeave AP| Reference Manual Version 2.0
NWDS IPC_CONNECT
The initiating end of a connection (the client) callsnwds_i pc_connect to establish aconnection
with the server. Thisfunction isincluded in all NetWeave rel eases.

Applications that communicate as peers may send messages to each other at any time. To receive a

message asynchronoudy whenever a partner sends one, you must specify thedat a_r ecei ved
callback. For more information, see page 89.

NWDS _ERRNO nwds_i pc_connect

(char *server_nane,
NWDS_HANDLE *server_id,
NWDS | TEM LI ST *control _itens,

NWDS_CALL_BACK *cal | _back,
NWDS CALL_BACK *dat a_r ecei ved);

Parameter Input | Output Description

server_name The server name (a NULL-terminated string) is an INI file

group that must contain one of the following:
- The token PROTOCOL, which contains information
about the communications parameters required to form
a connection with the server.

v

- The token NAME, a physical name whose first part is a
NetWeave node name. The node name indicates which
section of the INI file describes how to reach a
NetWeave Agent that mediates the connection with the
application server.

server_id The identifier for the new session. Use this identifier to write
messages to the other application.

control_items v A pointer to an array of system-specific parameters.

call_back A pointer to a callback structure that contains the function
that will be called when nwds_ipc_connect completes (when
the server_id is returned). If call_back=NULL, the call is
synchronous.

data_received A pointer to the callback to be called whenever a message
is received from the other application.

NOTE: If data_received=NULL, your application cannot
receive unsolicited messages. It must call nwds_ipc_read
each time it is ready to process an incoming message.
nwds_ipc_read will then suspend until data is available.

January 2003 95

III NetWeave API Reference Manual Version 2.0
L]
Return Code (output)
Return code Description
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling

nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_NO_MEMORY The system is overloaded; process out of memory.

NWDS_LIBRARY_ERROR Contact NetWeave support with the error traces and INI
file for the program that received the error.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

For more information about the return codes, see page 229.

Related Functions

nwds_sessi on_cl ose on page 133.
nwds_i pc_accept on page 89.
nwds_i pc_broadcast on page92.
nwds_i pc_opti ons onpage 98.
nwds_i pc_publ i sh onpage 101
nwds_i pc_read on page 104.
nwds_i pc_regi st er on page 107.
nwds_i pc_shut down on page 110.
nwds_i pc_wite onpagell3.

January 2003 96

I

NetWeave API| Reference Manual

Version 2.0

January 2003

97

Illl

NetWeave API Reference Manual Version 2.0
NWDS_IPC_OPTIONS
This function returns information (the number of queued messages, the length of each, asession’s

system type, etc.) from the communications layers. Thenwds_i pc_opti ons function isincluded in
all NetWeave releases.

To specify what connection information you want to know, use the return item list. Before calling
nwds_i pc_opt i ons, place the item types whose information you are requesting in the

ret ur ned_dat a list structure. If the call is asynchronous, use persistent memory to receive the
information that is returned. Do not declare return items on the local stack. Place the addresses of these
locations in the return_items item list. When the function call completes, NetWeave copies the values of
the requested items to the specified locations.

NWDS_ERRNO nwds_i pc_opti ons
(N\\DS_HANDLE i pc_handl e,
NWDS | TEM LI ST *returned_data);

Parameter Input | Output Description

ipc_handle v The identifier associated with the session of interest.

The following parameters are supported on all platforms:

- NWDS_IPC_ADDRESS: protocol-dependent port address
of the source of the first message in the queue (the
message origin).

- NWDS_IPC_MAX_SEND_SIZE: the maximum length of a
message that can be sent on this virtual circuit.

- NWDS_IPC_MESSAGE_SIZE: the length of the first
message in the queue.

- NWDS_IPC_PROTOCOL: the communications protocol
used by the virtual circuit.

- NWDS_IPC_QUEUE_COUNT: number of messages in the
queue.

- NWDS_IPC_SYSTEM_TYPE: the peer’s system type.

returned_data

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

For more information about the return codes, see page 229.

January 2003 98

III NetWeave API Reference Manual Version 2.0
L]

Related Functions

nwds_sessi on_cl ose on page 133.

nwds_i pc_accept on page 89.

nwds_i pc_broadcast on page 92
nwds_i pc_connect on page 95.
nwds_i pc_publ i sh onpage 101
nwds_i pc_read on page 104.
nwds_i pc_regi ster onpage 107.
nwds_i pc_shut down on page 110.
nwds_i pc_wite onpagel113.

January 2003

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 100

III NetWeave API Reference Manual Version 2.0
NWDS_ IPC_PUBLISH
The passive end of a connection (the server) calsnwds_i pc_publ i sh to create the port to which a

client will connect. The nwds_i pc_publ i sh function isincluded in al NetWeave releases.

NWDS_ERRNO nwds_i pc_publ i sh

(char *publ i c_nane,
NWDS_HANDLE *server _handl e,
NWDS | TEM LI ST *control _itens,

NWDS_CALL_BACK *cal | _back,
NWDS_CALL_BACK *cal | _received);

Parameter Input | Output Description

public_name y The name (a NULL-terminated string) in a process INI file
group where communications layer information is stored. A
public name never includes a NetWeave node name.

server_handle y The handle associated with the public name. Use this
handle to receive new connections from other applications.

control_items v A pointer to an array of system-specific parameters.

call_back y A pointer to a callback structure that contains the function
that will be called when nwds_ipc_publish completes (when
the server_id is returned). If NULL, the call is synchronous.

call_received y A pointer to the callback that will be called each time the
caller receives a new call from another application.
If call_received = NULL, your application can handle
requests from only one client at a time. To accept a
connection from a remote client when call_received =
NULL, you must do a synchronous nwds_ipc_accept
followed by synchronous calls to nwds_ipc_read.

Return Code (output)
Return code Description
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling

nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

For more information about the return codes, see page 229.

January 2003 101

III NetWeave API Reference Manual Version 2.0
L]

Related Functions

nwds_sessi on_cl ose on page 133.

nwds_i pc_accept on page 89.

nwds_i pc_broadcast on page 92
nwds_i pc_connect on page 95.
nwds_i pc_opti ons onpage 98.
nwds_i pc_read on page 104.
nwds_i pc_regi ster onpage 107.
nwds_i pc_shut down on page 110.
nwds_i pc_wite onpagel113.

January 2003 102

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 103

III NetWeave API Reference Manual Version 2.0
NWDS_IPC_READ
This function, which isincluded in al NetWeave releases, retrieves the first message from the queue or
initiates a read request on the underlying communications channel. How this function works depends on

whether your applications are peers or whether the client initiates all communication. In peer-to-peer
communications, NetWeave queues any unsolicited messages until the application retrieves them. For
more information, see the NetWeave Programmer's Guide.

Broadcasts are a specia case of unsolicited messages. To retrieve a broadcast message, NetWeave uses

thei pc_handl e returnedby nwds_i pc_regi st er. Thenwds_i pc_read functionisaways
synchronous.

NWDS_ERRNO nwds_i pc_r ead

(NWDS_HANDLE i pc_handl e,
NWDS_SI ZE buf fer_size,
voi d *buf fer,
NWDS_SI ZE *returned_size,

NWDS_| TEM LI ST *control _itens);

Parameter Input | Output Description

ipc_handle The session identifier that is returned from either
v : . .
nwds_ipc_connect (for the client), nwds_ipc_accept (for
the server), or nwds_ipc_register (for broadcasts).

buffer_size The maximum number of bytes that may be copied to the
buffer (next parameter).

NWDS_MAX_USER_SIZE in netweave.h specifies the
maximum length for a user's message. If buffer_size
exceeds the NWDS_MAX_USER_SIZE value, NetWeave
returns the error NWDS_DATA_OVERFLOW.

buffer v The address of the array where the message is returned.
returned_size v The actual number of bytes copied to the buffer.
control_items v A pointer to an array of system-specific parameters.

See Considerations on the next page.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

For more information about the return codes, see page 229.

January 2003 104

I

NetWeave API| Reference Manual Version 2.0
Considerations
Client - Server Communication

|

If your application does not accept unsolicited messages, you must use nwds_i pc_r ead to initiate a
read on the communications line. The call is blocked until a message is received. For more information
about communication when one or the other of the applications does not accept unsolicited messages,
please see the NetWeave Programmer's Guide

control_items

Platform Parameter Description

All platforms NWDS_IPC_CONVERT_NAME | A NULL-terminated string. If it is present,
NetWeave will translate the message to the
reader’s format. The name is a group that
contains information that describes each field
in the structure of the message.

Tandem NWDS_TAN_TAG A long; Guardian I/O tag, output from read,
input to write.

Related Functions

nwds_sessi on_cl ose onpage 133.
nwds_i pc_accept on page 89.
nwds_i pc_br oadcast on page 92
nwds_i pc_connect on page 95.
nwds_i pc_opti ons onpage 98.
nwds_i pc_publ i sh onpage 101.
nwds_i pc_regi st er onpage 107.
nwds_i pc_shut down on page 110.
nwds_ipc_wite onpagell3

January 2003 105

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 106

III NetWeave API Reference Manual Version 2.0
NWDS _IPC_REGISTER
This function registers an application to receive broadcasts of a specific event type. The
nwds_i pc_r egi st er functionis provided as part of NetWeave' s Broadcast option.

Applications that accept broadcast messages (receivers) register for broadcast messages by event type.
When a sender broadcasts a message, areceiver isinterrupted only if it is a message of an event type for
which the receiver has registered.

If the dat a_r ecei ved callback is present, NetWeave collects and queues broadcast messages for
delivery to the application. When another process broadcasts a message of the registered event type,
NetWeave cadlsthedat a_r ecei ved callback to notify the application that a new message has
arrived. NetWeave queues the message until it is retrieved by acall to nwds_i pc_r ead. The same
callback function may be associated with more than one event type. If thereisno dat a_r ecei ved
callback, the application must call nwds_i pc_r ead to initiate the communications. In this case,
nwds_i pc_r ead isablocking cal.

NWDS_ERRNO nwds_i pc_regi ster

(char *broadcast _port,
NWDS_HANDLE *i pc_handl e,
NWDS_FI LTER_CLASS event _type,
NWDS | TEM LI ST *control _itens,
NWDS_CALL_BACK *cal | _back,
NWDS_CALL_BACK *dat a_recei ved);
Parameter Input | Output Description
broadcast_port y The broadcast_port is either
- a physical name whose first part is a NetWeave node
name
- a group in the INI file (the group’s NAME statement
defines a physical name that contains a node name)
The node name is the INI file section that describes how to
reach the NetWeave Agent that receives the broadcast on
behalf of the application.
ipc_handle y When your application is ready to process a broadcast
message, ipc_handle is passed to nwds_ipc_read to retrieve
the message.
event_type v A parameter that allows a receiver to identify messages as
belonging to a class of messages known to the application.
control_items v A pointer to an array of system-specific parameters. There are
no control items in NetWeave version 2.0.
call_back v A pointer to the callback structure. If NULL, the call is
synchronous.
data_received v A pointer to the callback structure that contains the function to
call when the application receives a broadcast message.

January 2003 107

III NetWeave API Reference Manual Version 2.0
L]
Return Code (output)
Return code Description
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init()
and before calling nwds_exit(). Call nwds_init() and re-issue

the NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_sessi on_cl ose onpage 133.
nwds_i pc_accept on page 89.
nwds_i pc_br oadcast on page 92
nwds_i pc_connect on page 95.
nwds_i pc_opti ons onpage 98.
nwds_i pc_publ i sh onpage 101.
nwds_i pc_read on page 104.
nwds_i pc_shut down on page 110.
nwds_ipc_wite onpagell3

January 2003 108

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 109

{

NetWeave API| Reference Manual

NWDS_IPC_SHUTDOWN

Version 2.0

This function terminates and cleans up a connection. Thenwds_i pc_shut down function isincluded

in all NetWeave releases.

NWDS_ERRNO nwds_i pc_shut down
(N\\DS_HANDLE i pc_handl e,
NWDS_| TEM LI ST *itemlist,
NWDS CALL_BACK *cal | _back);

Parameter Input | Output Description
ipc_handle v The handle associated with a particular session that is
returned from any of the following:
- nwds_ipc_connect (for the client)
- nwds_ipc_accept (for the server)
- nwds_ipc_register (for broadcasts)
item_list v A pointer to an array of system-specific parameters.
call_back v A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code

Description

NWDS_NOT_INITIALIZED

All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_SUCCESSFUL

The call completed successfully.

For more information about the return codes, see page 229.

Considerations

For nwds_i pc_publ i sh, usenwds_i pc_shut down to prevent any new calls from being
accepted for agiven public name.

For nwds_i pc_regi st er,usenwds_i pc_shut down to cancel aregistration for broadcasts of a

particular event type.

January 2003

110

III NetWeave API Reference Manual Version 2.0
L]

Related Functions

nwds_sessi on_cl ose on page 133.

nwds_i pc_accept on page 89.

nwds_i pc_broadcast on page 92
nwds_i pc_connect on page 95.
nwds_i pc_opti ons onpage 98.
nwds_i pc_publ i sh onpage 101
nwds_i pc_read on page 104.
nwds_i pc_regi st er onpage 107.
nwds_i pc_wite onpagel113.

January 2003 111

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 112

connection. To acknowledge that the message was received, the receiving application calls
nwds_i pc_r ead. Thisisthe only way to notify the sender that the message was delivered.

III NetWeave API| Reference Manual Version 2.0
NWDS_IPC_WRITE
This function, which isincluded in al NetWeave releases, sends a message through an established

For peer-to-peer communication, either the application that initiates a connection (the client) or the
application to which the connection is made (the server) may send one or more messages &t any time to
the partner application. For more information about peer-to-peer communication, see the NetWeave
Programmer's Guide.

NWDS _ERRNO nwds_ipc_wite

(NWDS_HANDLE i pc_handl e,
NWDS_SI ZE buf fer_size,
voi d *puf f er,

NWDS | TEM LI ST *control _itens,
NWDS CALL_BACK *cal | _back);

Parameter Input | Output Description

The handle associated with a particular session that is
returned by one of the following:

- nwds_ipc_connect (for the client)

- nwds_ipc_accept (for the server)

ipc_handle v

buffer_size v The number of bytes in the buffer (next parameter,
below).

In netweave.h, NWDS_MAX_USER_SIZE specifies the
maximum length of a user's message. If this value
exceeds buffer_size, NetWeave returns the error
NWDS_DATA_OVERFLOW.

buffer v The address of the message buffer.

control_items v A pointer to an array of system-specific parameters.

NWDS_IPC_CONVERT_NAME is the name (a NULL
terminated string) of a group that contains information
about each field in the structure of the message. If this
named group is present, NetWeave will translate the
message to a common network format.

A pointer to the callback structure. If NULL, the call is
synchronous.

call_back

January 2003 113

III NetWeave API| Reference Manual Version 2.0
*
Return Code (output)
Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

For more information about the return codes, see page 229.

Related Functions

nwds_sessi on_cl ose on page 133.
nwds_i pc_accept on page 89.
nwds_i pc_broadcast on page 92.
nwds_i pc_connect on page 95.
nwds_i pc_opt i ons on page 98.
nwds_i pc_publ i sh onpage 101.
nwds_i pc_read on page 104.
nwds_i pc_regi st er on page 107.
nwds_i pc_shut down on page 110.

January 2003 114

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 115

Programming languages such as COBOL that do not support pointer data types can use the
nwds_item | oad char function.

Illl

NetWeave API| Reference Manual Version 2.0
NWDS_ITEM_LOAD_ CHAR
This function, which isincluded in al NetWeave releases, assigns a char array to an item list element.

NWDS_ERRNO nwds_i tem | oad_char (
NWDS | TEM LI ST *control _I|ist,

NWDS_SI ZE i ndex,

NWDS_| TEM TYPE item type,

NWDS_SI ZE itemsize,

voi d *itemval ue);

Parameter Input | Output Description
control_list v An item list array you want to construct.
index v The index of the array element you want to load.
item_type v The type of the item. Select from the list in netweave.h.
item_size v The size of the char input array, which is added to the

control list.
item_value v The address of the first element of the char array.
Return Code (output)
Return code Description
NWDS_SUCCESSFUL The call completed successfully.
NWDS_INVALID_ITEM An item in an item list is not of the proper data type or the value is
out of range.

For more information about the return codes, see page 229.

Related Functions

nwds_i nit on page 88.

nwds_i tem | oad_handl e onpage 118.
nwds_item | oad | ong on page 120.
nwds_item | oad short onpagel22

January 2003 116

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 117

identifier) to an item list eement. Programming languages such as COBOL that do not support pointer
datatypes can usethenwds_i t em | oad_handl e function.

Illl

NetWeave API| Reference Manual Version 2.0
NWDS_ITEM_LOAD_ HANDLE
This function, which isincluded in all NetWeave releases, assigns a handle value (a transaction

NWDS_ERRNO nwds_i tem | oad_handl e (
NWDS | TEM LI ST *control _I|ist,

NWDS_SI ZE i ndex,
NWDS_| TEM TYPE item type,
NWDS_HANDLE *item.val ue);
Parameter Input | Output Description
control_list v An item list array you want to construct.
index v The index of the array element you want to load.
item_type v The type of the item. (Select from the list in netweave.h).
item_value v The name of the variable in the program’s data space
whose value is added to the list.
NOTE: This name must be a NetWeave handle.

Return Code (output)

Return code Description

NWDS_INVALID_ITEM An item in an item list is not of the proper data type or the value is
out of range.

NWDS_SUCCESSFUL The call completed successfully.

For more information about the return codes, see page 229.

Related Functions

nwds_i nit on page 88.

nwds_item | oad_char onpage 116.
nwds_item | oad | ong on page 120.
nwds_item | oad_short on page122.

January 2003 118

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 119

element. Programming languages such as COBOL that do not support pointer data types can use the
nwds_i tem | oad_| ong function.

Illl

NetWeave API| Reference Manual Version 2.0
NWDS_ITEM _LOAD LONG
This function, which isincluded in al NetWeave releases, assigns along integer value to an item list

NWDS_ERRNO nwds_item | oad_Il ong (
NWDS | TEM LI ST *control _I|ist,

NWDS_SI ZE i ndex,

NWDS_| TEM TYPE item type,

| ong *item.val ue);

Parameter Input | Output Description
control_list v An item list array you want to create.
index v The index of the array element you want to load.
item_type v The type of the item. (Select from the list in netweave.h.)
item_value y The name of the variable in the program’s data space

whose value is added to the list.

Return Code (output)

Return code Description
NWDS_SUCCESSFUL The call completed successfully.
NWDS_INVALID_ITEM An item in an item list is not of the proper data type or the value is
out of range.

For more information about the return codes, see page 229.

Related Functions

nwds_i nit on page 88.

nwds_item | oad_char on page 116.
nwds_i tem | oad_handl e onpage 118.
nwds_item | oad_short on page122.

January 2003 120

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 121

element. Programming languages such as COBOL that do not support pointer data types can use the
nwds_item | oad short function.

Illl

NetWeave API| Reference Manual Version 2.0
NWDS_ITEM_LOAD_SHORT
This function, which isincluded in all NetWeave releases, assigns a short integer value to an item list

NWDS_ERRNO nwds_item | oad_short (

NWDS_| TEM LI ST *control _list,

NWDS_SI ZE i ndex,

NWDS_| TEM TYPE itemtype,

short *itemyval ue);

Parameter Input | Output Description
control_list v An item list array you want to construct.
index v The index of the array element you want to load.
item_type v The type of the item. (Select from the list in netweave.h).
item_value y The name of the short variable in the program’s data
space whose value is added to the list.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init()
and before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

NWDS_SUCCESSFUL The call completed successfully.

NWDS_INVALID_ITEM An item in an item list is not of the proper data type, or the value is
out of range.

For more information about the return codes, see page 229.

Related Functions

nwds_i nit on page 88.

nwds_item | oad_char on page 116.
nwds_i tem | oad_handl e onpage 118.
nwds_item | oad_| ong on page 120.

January 2003 122

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 123

III NetWeave API Reference Manual Version 2.0
L]
NWDS_ LOGOFF
Use this function to exit from aremote system. The nwds_| ogof f function isincluded in dl
NetWeavereleases.
NWDS_ERRNO nwds_| ogof f
(char *system nane,
NWDS | TEM LI ST *control _itens,
NWDS CALL_BACK *cal | _back);

Parameter Input Output Description

system_name y The name of the system from which you want to
disconnect.

control_items A pointer to an array of system-specific parameters.

v There are no control_items currently defined for
nwds_logoff.
call_back y A pointer to the callback structure. If NULL, the call is
synchronous.
Return Code (output)
Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init() and
before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_| ogon on page 126.
nwds_nsgl og on page 126.
nwds_passwor d on page 130.

January 2003 124

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 125

III NetWeave API Reference Manual Version 2.0
NWDS_LOGON
This function, which isincludedin al NetWeave releases, connects the calling application to aremote
system with validated access. To use the nwds_| ogon function, you must have a NetWeave Agent

running on the remote platform. The Agent vaidates the supplied user name/password against the
remote platform’s authentication facility. For additional security, the calling application may also
request that the Agent on the remote system periodically send a challenge string.

NWDS_ERRNO nwds_| ogon

(char *syst em _nane,
NWDS_SI ZE name_si ze,
voi d *user _nane,

NWDS | TEM LI ST *control _itens,
NWDS | TEM LI ST *return_itens,

NWDS CALL_BACK *cal | _back);

Parameter Input | Output Description

system_name v The name of the system to which you want to connect.

name_size v The size of the name.

user_name v The name of the user who is logging on.

control_items v A pointer to an array of system-specific parameters. There
are no control_items currently defined for nwds_logon.

return_items v If you implement challenge-response authentication, you
may request the return item nwds_acl_challenge.

call_back v A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_| ogof f onpage 124.
nwds_nsgl og on page 126.
nwds_passwor d on page 130.

January 2003 126

III NetWeave API Reference Manual Version 2.0
NWDS_MSGLOG
The nwds_nsgl og function alows applications to add application-level logging to the NetWeave
logging facility, and to control the logging level (DEBUG, | NFO, ERROR) externd to the operating

program. The application must set the severity level of a message to a vaue specified by
nwds_nsgl og_severity. The messagesin the log will be formatted according to the conventions
of theprintf functioninC.

The nwds_nsgl og function is dways synchronous. For more information, see “Message and Error
Logging Considerations’ in the NetWeave Configuration Guide.

typedef enum {
NWDS_M.STRACE = 1, [*"TRACE" nsgl og_| evel */
NWDS_M_SI NFO, [*"I NFO' nsgl og_| evel */
NVDS_M_SWARNI NG, /*"WARNI NG' msgl og_| evel */
NWDS_M.SERROR, /*"ERROR" nsgl og_| evel */
NWDS_M.SFATAL [*" FATAL" nsgl og_| evel */

} NWDS_MSGLOG_SEVERI TY;

NWDS_ERRNO nwds_mnsgl og(
NWDS_MSGLOG_SEVERI TY severity,
const char *format,
parameters...);

Parameter Input | Output Description
severity v One of the values specified by the enumerated type
nwds_msglog_severity, cf. netweave.h. Indicates the level
of error associated with the generated message.
format v The format string follows the conventions of the printf
function in C.
parameters v The data types and order of parameters must match the
data type indicators in the format string.
Return Code
Return code Description
NWDS_BAD_PARAMETER You are trying to call a function but one of your parameters
is out of range.

For more information about the return codes, see page 229.

January 2003 127

III NetWeave AP| Reference Manual Version 2.0
*

Related Functions

nwds_| ogof f on page 124.

nwds_| ogon on page 126.

nwds_passwor d on page 130.

January 2003 128

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 129

option, you may return a response to a challenge to the remote server.)

III NetWeave API Reference Manual Version 2.0
NWDS PASSWORD
This function, which isincluded in all NetWeave releases, sends a password to a remote system. (Asan

NVDS_ERRNO nwds_passwor d

(char *system nane,
NWDS_SI ZE buffer_size,
voi d *password,

NWDS | TEM LI ST *control _item
NWDS_CALL_BACK *cal | _back);

Parameter Input | Output Description
system_name v The name of the system to which you want to connect.
buffer_size v The length of the password string.
password v A pointer to an array that contains the password.

control_items A pointer to an array of system-specific parameters.

v Currently there are no control items specific to
nwds_password.
call_back y A pointer to the callback structure. If NULL, the call is
synchronous.
Return Code (output)
Return code Description
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling

nwds_init() and before calling nwds_exit(). Call
nwds_init() and re-issue the NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_| ogof f on page 124.
nwds_| ogon on page 126.
nwds_nsgl og on page 126.

January 2003 130

III NetWeave API Reference Manual Version 2.0
NWDS_ PING
Thenwds_pi ng function determines the status of a connection to a NetWeave Agent by sending a
(very short) message to the NetWeave Agent, which echoes a return message. If there is no connection,
oneiscreated if it spossible. If nwds_syst em t ype has dready established a connection, it does

not send a message to the NetWeave Agent. The nwds_pi ng function isincluded in al NetWeave
releases.

NWDS_ERRNO nwds_pi ng
(char *net weave_node,
NWDS_| TEM LI ST *itemlist,
NWDS_CALL_BACK *cal | _back);

Parameter Input | Output Description

netweave_node y A section name in the INI file that specifies the
parameters for the communications layer between your

application and the application or NetWeave Server that

corresponds to the node.

The name is a sequence of letters followed by two colons

and terminated with a NULL byte. It may be either a

logical name or a node name.

item_list y A pointer to an array of system-specific parameters.
Currently there are no item types specific for nwds_ping.

call_back y A pointer to a callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init() and
before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_syst em t ype on page 166.

January 2003 131

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 132

used mainly to clean up resources associated with a broadcast session. This function isincluded in all
NetWeave releases. For more information, see nwds_i pc_br oadcast on page 92.

III NetWeave API Reference Manual Version 2.0
NWDS SESSION CLOSE
Thenwds_sessi on_cl ose function releases al resources associated with a NetWeave node, and is

NWDS_ERRNO nwds_sessi on_cl ose

(char *net weave_node,
NWDS_| TEM LI ST *itemlist,
NWDS_CALL_BACK *cal | _back);
Parameter Input Output Description
netweave_node v A section name in the INI file that specifies the

parameters for the communications layer between
your application and the application or NetWeave
Agent corresponding to the node.

The name is a sequence of letters followed by two
colons and terminated with a NULL byte. The name
may be either a logical name or a node name.

item_list A pointer to an array of system-specific parameters.
Currently no item types are specific to
nwds_session_close.

call_back A pointer to a callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call
nwds_init() and re-issue the NetWeave function call.

NWDS_PROCESS_NOT_CONNECTED | The session is already closed.

For more information about the return codes, see page 229.

Related Functions

nwds_i pc_accept on page 89.
nwds_i pc_broadcast on page 92
nwds_i pc_connect onpage 95.

nwds_i pc_opti ons onpage 98.

January 2003 133

nwds_i pc_regi ster onpage 107.

III NetWeave API| Reference Manual Version 2.0
*

nwds_i pc_publ i sh onpage 101

nwds_i pc_read on page 104.

nwds_i pc_shut down on page 110.
nwds_i pc_wite onpagel113.

January 2003 134

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 135

III NetWeave API Reference Manual Version 2.0
NWDS SLEEP
A cal to nwds_sl eep suspends your application, and the item types you specify further defineif and

when your process resumes execution. The nwds_sl eep function isincluded in all NetWeave
releases.

Programs containing asynchronous operations call nwds_sl eep to resynchronize. Either your
program waits indefinitely while callbacks continue processing, or your program waits for an event to
occur or for atimeout period to expire.

NWDS_ERRNO nwds_sl eep
(NWDS_M LLI SECONDS ti neout,

NWDS_| TEM LI ST *itemlist,
NWDS_CALL_BACK *cal | _back);
Parameter Input | Output Description
timeout v If positive, the timeout duration is specified in milliseconds.

If timeout=-1, timeout is forever.

item_list v A pointer to an array of system-specific parameters. The
following item types apply to nwds_sleep:
- NWDS_KERNEL_ONCE
- NWDS_KERNEL_SUSPEND
For more information, see Considerations below.
call_back v nwds_sleep ignores the call_back parameter. Set it to
NULL.
Return Code (output)
Return code Description
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling

nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_PENDING The operation was initiated successfully. Final status and
data will be delivered to the specified callback function.
NWDS_SUCCESSFUL The call completed successfully.

For more information about the return codes, see page 229.

January 2003 136

III NetWeave API Reference Manual Version 2.0

L]
Considerations
When using nwds_s| eep, the term next eventrefers to any activity that causes a user’s callback to be
caled - typicaly activity in acommunications layer controlled by the NetWeave middleware. Y our
program may suspend in any of the following ways:

Timeout value Item type Result

Negative (-1) | NWDS_KERNEL_ONCE Your program will wait forever for the next event.
Applications may use this form of nwds_sleep to
construct a poll loop that checks whether some
application activity has occurred, and if not,
suspends again.

NWDS_KERNEL_ONCE is Your program will suspend indefinitely. Use this
not present form of nwds_sleep for normal asynchronous
operations where all application work is performed
in the callbacks in reaction to messages,
broadcasts, or triggers that the program receives.
This is referred to as the event-driven model of
asynchronous programming.

Positive NWDS_KERNEL_SUSPEND | The underlying software will continue to call
callback functions until the timer expires. Use this
form of nwds_sleep to introduce a delay in your
main line of execution, while continuing to allow
callback functions to be invoked by the NetWeave
system. For example, use this form of nwds_sleep
for application level poll loops where multiple
events must be resynchronized.

NWDS_KERNEL_SUSPEND | The underlying software will suspend until the next
is not present event, such as the expiration of the timeout period.

If the next event is not expiration of the timer, but
instead (for example) some communications
activity, the timer is canceled and control is
returned to your program. Use this form of
nwds_sleep to implement application-level timeouts
for asynchronous function calls.

Related Functions

nwds_exit on page4l.

nwds_sl eep_cal | back on page 138.
nwds_sl eep_cl ear _cal | back on page 141.
nwds_st op on page 164.

nwds_ti mer_start on page 169.

nwds_ti ner st op onpage 172.

January 2003 137

permit serialization of user callbacks. NetWeave then calls the enqueued callback during the next
processing cycle. The nwds_sl eep_cal | back function isincluded in al NetWeave releases.

III NetWeave API Reference Manual Version 2.0
NWDS_SLEEP_CALLBACK
Thenwds_sl eep_cal | back function lets you enqueue a callback from a notification routine to

NWDS_ERRNO nwds_sl eep_cal | back
(NWDS_CALL_BACK *cal | _back,

NWDS_ERRNO errno);
Parameter Input | Output Description

call_back v The callback structure identifies the application function that
NetWeave will call at the beginning of the next processing
cycle. This memory must persist after the current function
exits.

errno v The condition code that the enqueing function wants to pass
to the subsequent callback procedure.

Return Code (output)

Return code Description
NWDS_SUCCESSFUL The call completed successfully.
NWDS_NO_MEMORY The application exceeds the available heap space.

For more information about the return codes, see page 229.

Considerations

To serialize callback processing, use nwds_sl eep_cal | back to enqueue a callback from a
notification routine. Y ou must enter the seep forever loop with a specid item list type called
NWDS_KERNEL _ L OOP. The code fragment below shows how to do this.

NWDS_| TEM LI ST itens[2];

items[0].type
itenms[1l].type

NWDS_KERNEL_ L OOP;
NWDS_END_OF_LI ST;

status = nwds_sl eep(-1L, itens, NULL);

During one processing cycle, additional callbacks may be enqueued. Any callback that is enqueued
during acycleisinvoked at the beginning of the next cycle. If severa callbacks are queued at the same

January 2003 138

III NetWeave API Reference Manual Version 2.0
L]
time, they are invoked in the chronological order in which they were enqueued. If an application is
waiting under the kernel suspend option, nwds _s| eep will return at the end of the cycle.

Related Functions

nwds_exit onpage4l.

nwds_ sl eep on page 136.

nwds_sl eep_cl ear _cal | back on page 141.

nwds_st op on page 164.

nwds_tiner_start onpage 169.

nwds_tiner st op onpage 172.

January 2003 139

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 140

III NetWeave API Reference Manual Version 2.0
NWDS_SLEEP _CLEAR_CALLBACK
This function clears or cancels a previously enqueued callback, and should be used in conjunction with

thenwds_sl eep_cal | back. function. Thenwds_sl eep_cl ear _cal | back functionis
included in al NetWeave releases.

NWDS_ERRNO nwds_sl eep_cl ear _cal | back
(NWDS_CALL_BACK *cal | _back);

Parameter Input | Output Description

call_back y The callback structure identifies the callback that
NetWeave is to cancel.

Return Code (output)

Return code Description
NWDS_SUCCESSFUL The call completed successfully.
NWDS_PROCESS_NOT_FOUND The callback is not currently registered with NetWeave.
NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

For more information about the return codes, see page 229.

Related Functions

nwds_exit onpage4l.

nwds_sl eep on page 136.

nwds_sl eep_cal | back on page 138.
nwds_st op on page 164.

nwds_t i nmer_start onpage 169.
nwds_ti mer _st op onpage 172.

January 2003 141

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 142

III NetWeave API Reference Manual Version 2.0
NWDS_SQL_COLUMN_BIND
This function relates a variable in the user’ s data space to a specific column of a SQL table. The
nwds_sql _col umm_bi nd function is provided as part of NetWeave' s Data Server option.

NWDS _ERRNO nwds_sqgl _col unm_bi nd

(NWDS_HANDLE handl e,

NWDS_SI ZE col um_nunber,

voi d *val ue_address);

Parameter Input Output Description
handle v The handle to use for operations on this table.
column_number v The index of the column.
value_address v The name of a variable in the program’s data space
to which data from this column will be returned.

Return Code (output)

Return code Description
NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling

nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_SQL_INVALID_COLUMN | Invalid column index.
NWDS_SUCCESSFUL The bind is successful.

For more information about the return codes, see page 229.

Related Functions

nwds_sql _col um_count on page 143.
nwds_sql _col utmm_get on page 146.
nwds_sql _col unn_i nf o on page 149.
nwds_sql _connect onpage 152.
nwds_sql _di sconnect on page 166.
nwds_sql _execut e on page 154.
nwds_sql f et ch on page 158.
nwds_sql _sel ect onpage 161.

January 2003 143

III NetWeave API Reference Manual Version 2.0
NWDS_ SQL_COLUMN_COUNT
After successful execution of a SELECT command, usenwds_sql _col umm_count to obtain the

number of columns described by the SELECT. Thisfunction is provided as part of NetWeave' s Data
Server option.

NWDS_ERRNO nwds_sql _col unm_count

(NWDS_HANDLE handl e,
NWDS_SI ZE *col um_nunber) ;
Parameter Input Output Description
handle v The handle to use for operations on this file.
column_number v The number of columns described.

Return Code (output)

Return code Description
NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.
NWDS_SUCCESSFUL The bind is successful.

For more information about the return codes, see page 229.

Related Functions

nwds_sql _col umm_bi nd on page 143.
nwds_sql _col utm_get on page 146.
nwds_sqgl _col um_i nf o on page 149.
nwds_sql _connect onpage 152.
nwds_sql _di sconnect on page 166.
nwds_sql _execut e on page 154.
nwds_sql _f et ch on page 158.
nwds_sql _sel ect onpage 161.

January 2003 144

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 145

This function returns the name of acolumn asastring. Thenwds_sqgl _col urm_get functionis
provided as part of NetWeave' s Data Server option.

III NetWeave API Reference Manual Version 2.0
NWDS_SQL_COLUMN_GET

|

NWDS_ERRNO nwds_sql _col utm_get

(N\\DS_HANDLE handl e,
NWDS_SI ZE col um_nunber,
NWDS_SI ZE maxi mum nane_si ze,
voi d *val ue_addr ess,
NWDS_SI ZE *actual _nane_si ze);
Parameter Input | Output Description
handle v The handle to use for operations on this file.
column_number v The index of the column.
maximum_name_size v The maximum size of the column name.
value_address v The name of a variable in the program’s data
space to which data from this column will be
returned.
actual_name_size v The actual size of the column name.
Return Code (output)
Return code Description
NWDS_SUCCESSFUL The bind is successful.
NWDS_BAD_HANDLE The first parameter is invalid. You are trying to reuse a

handle that has become invalid, usually because a file or
connection was closed.

NWDS_SQL_INVALID_COLUMN The second parameter is invalid.
NWDS_DATA_OVERFLOW The third parameter is too small.

For more information about the return codes, see page 229.

Related Functions

nwds_sql _col unm_bi nd on page 143.
nwds_sql _col um_count on page 143.

nwds_sql _col umm_i nf o on page 149.

January 2003 146

nwds_sql _execut e on page 154.

III NetWeave API Reference Manual Version 2.0
L]

nwds_sql _connect on page 152.

nwds_sql _di sconnect on page 166.

nwds_sql _f et ch on page 158.
nwds_sql _sel ect onpage 161.

January 2003 147

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 148

III NetWeave API Reference Manual Version 2.0
NWDS SQL_COLUMN_INFO
After a successful execution of a SELECT command, use nwds_sqgl _col urm_i nf o to obtain the

name and data type of each of the columns described by SELECT. This function is provided as part of
NetWeave' s Data Server option.

NWDS_ERRNO nwds_sql _col um_i nfo

(NV\DS_HANDLE handl e,
NWDS_SI ZE col um_nunber,
NWDS_SI ZE name_buf fer,
char *nane,

NWDS_SI ZE *return_size,

NWDS_DATA CLASS *data_type);

Parameter Input Output Description
handle v The handle to use for operations on this file.
column_number v The number of the column for which you wish to
obtain information.
name_buffer v The size of the buffer for name.
name v The name of the data type.
return_size v The size of the column name.
data_type v The data type of the column.

Return Code (output)

Return code Description
NWDS_BAD_HANDLE You are trying to reuse a handle that has become
invalid, usually because a file or connection was
closed.
NWDS_DATA_OVERFLOW The third parameter is too small.
NWDS_SQL_INVALID_COLUMN The second parameter is invalid.
NWDS_SUCCESSFUL The bind is successful.

For more information about the return codes, see page 229.

January 2003 149

III NetWeave API Reference Manual Version 2.0
L]

Related Functions

nwds_sql _col unm_bi nd on page 143.

nwds_sql _col um_count on page 143.

nwds_sql col um_get on page 146.
nwds_sql _connect onpage 152.
nwds_sql _di sconnect on page 166.
nwds_sql _execut e on page 154.
nwds_sql _f et ch on page 158.
nwds_sql _sel ect onpage 161.

January 2003 150

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 151

nwds_sql _connect functionisprovided as part of NetWeave s Data Server option.

III NetWeave API Reference Manual Version 2.0
NWDS SQL_CONNECT
Use this function to attach to the SQL database at the system specified by syst em nane. The

NWDS_ERRNO nwds_sql _connect

(char *system nane,

NWDS_HANDLE *handl e,

NWDS | TEM LI ST *control _itens,

NWDS_CALL_BACK *cal | _back);

Parameter Input | Output Description
system_name v The name of the system to which you want to connect.
handle v The handle to use for subsequent operations on this file.

control_items A pointer to an array of system-specific parameters:

v
- NWDS_SQL_USERNAME
- NWDS_SQL_PASSWORD
call_back y A pointer to the callback structure. If NULL, the call is
synchronous.
Return Code (output)
Return code Description
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling

nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_sql _col unm_bi nd on page 143.
nwds_sql _col um_count on page 143.
nwds_sql _col unn_get on page 146.
nwds_sql _col unn_i nf o on page 149.
nwds_sql _di sconnect on page 166.
nwds_sql _execut e on page 154.
nwds_sql _f et ch on page 158.
nwds_sql _sel ect onpage 161.

January 2003 152

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 153

III NetWeave API Reference Manual Version 2.0
L]
NWDS_ SQL_DISCONNECT
Use this function to disconnect from a SQL database. Thenwds_sql _di sconnect functionis
provided as part of NetWeave' s Data Server option.
NWDS_ERRNO nwds_sql _di sconnect
(N\WDS_HANDLE handl e,
NWDS | TEM LI ST *control _itens,
NWDS_CALL_BACK *cal | _back);

Parameter Input | Output Description
handle v The handle to use for operations on this file.
control_items v A pointer to an array of system-specific parameters.
call_back v A pointer to the callback structure. If NULL, the call is

synchronous.
Return Code (output)
Return code Description

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,

usually because a file or connection was closed.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call
nwds_init() and re-issue the NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_sql _col umm_bi nd on page 143.
nwds_sql _col umm_count on page 143.
nwds_sql _col unm_get on page 146.
nwds_sql _col unm_i nf o on page 149.
nwds_sql _connect onpage 152.
nwds_sql _execut e on page 154.
nwds_sql _f et ch on page 158.
nwds_sql _sel ect onpage 161.

January 2003 154

III NetWeave API Reference Manual Version 2.0
NWDS_ SQL_EXECUTE
Use this function to execute a command on aremote SQL database. The nwds_sql _execut e

function is provided as part of NetWeave s Data Server option.

NWDS_ERRNO nwds_sql _execut e

(N\\DS_HANDLE handl e,

char *conmmand,

char **vari abl e_val ues,
NWDS_| TEM LI ST *control _itenmns,
NWDS | TEM LI ST *return_itens,

NWDS_CALL_BACK *cal | _back);

Parameter Input Output Description
handle v The handle to use for operations on this file.
command v The SQL command to execute during the call. Not all

SQL statements will be processed by
nwds_sql_execute. For example, SELECT and FETCH
statements cannot be executed; but they have their
own API.

For Tandem’s NonStopSQL, the BEGIN WORK,
COMMIT WORK and ROLLBACK WORK commands are
rejected. Instead, use nwds_tp_start, nwds_tp_commit,
and nwds_tp_abort.

variable_values An array of strings that specify input values for

parameters in the command.

control_items v A pointer to an array of system-specific parameters.

return_items A pointer to an array of system-specific parameters:

- NWDS_SQL_ERROR_CODE: the host SQL process
returns these codes.

- NWDS_SQL_ERROR_TEXT: The programmer must
interpret the codes for the platform and determine
the nature of the problem.

call_back A pointer to the callback structure. If NULL, the call is

synchronous.

January 2003 155

III NetWeave API Reference Manual Version 2.0
*
Return Code (output)
Return code Description

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling

nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

If nwds_sql _execut e returnsnwds_sql _i nval i d_ver b, use another NetWeave function for
this task. For more information about the return codes, see page 229.

Related Functions

nwds_sql _col umm_bi nd on page 143.
nwds_sqgl _col unm_count onpage 143.
nwds_sql _col utm_get on page 146.
nwds_sqgl _col unm_i nf o on page 149.
nwds_sql connect onpage 152.
nwds_sql _di sconnect on page 166.
nwds_sql _f et ch on page 158.
nwds_sql _sel ect onpage 161.

January 2003 156

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 157

Illl

NetWeave API Reference Manual Version 2.0
L]
NWDS_SQL_FETCH
Use this function to return one row and store the values in the user’ s data space. The

nwds_sql _fetch functionis provided as part of NetWeave' s Data Server option.

NWDS_ERRNO nwds_sql _fetch

(N\\DS_HANDLE handl e,
NWDS | TEM LI ST *control _itens,
NWDS | TEM LI ST *return_itens,

NWDS_CALL_BACK *cal | _back);

Parameter Input | Output Description
handle v The handle to use for operations on this file.
control_items v A pointer to an array of system-specific parameters.
return_items y A pointer to an array of system-specific parameters:

- NWDS_SQL_ERROR_CODE: the host SQL process
returns these codes.

- NWDS_SQL_ERROR_TEXT: the programmer must
interpret the codes for the platform and determine the
nature of the problem.

call_back v A pointer to the callback structure. If NULL, the call is
synchronous.
Return Code (output)
Return code Description
NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

For more information about the return codes, see page 229.

Related Functions

nwds_sql _col unm_bi nd on page 143.
nwds_sql _col um_count on page 143.
nwds_sql _col utmm_get on page 146.
nwds_sql _col unn_i nf o on page 149.
nwds_sql _connect onpage 152.

January 2003 158

III NetWeave API| Reference Manual Version 2.0
*

nwds_sql _di sconnect on page 166.
nwds_sql _execut e on page 154.
nwds_sql _sel ect onpage 161.

January 2003 159

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 160

III NetWeave API Reference Manual Version 2.0
NWDS SQL _SELECT
This function executes SELECT on aremote SQL database. Thenwds_sql _sel ect functionis

provided as part of NetWeave s Data Server option.

NWDS_ERRNO nwds_sql _sel ect

(N\\DS_HANDLE handl e,
char *conmmand,
char **vari abl e_val ues,

NWDS | TEM LI ST *control _itens,
NWDS | TEM LI ST *return_itens,
NWDS_CALL_BACK *cal | _back);

Parameter Input | Output Description
handle v The handle to use for subsequent operations on this file.
command v The SQL select command.
variable_values v An array of ;trings that specify input values for
parameters in the command.
control_items v A pointer to an array of system-specific parameters.
return_items v A pointer to an array of system-specific parameters.
call_back v A pointer to the callback structure. If NULL, the call is
synchronous.
Return Code (output)
Return code Description
NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid, usually
because a file or connection was closed.

For more information about the return codes, see page 229.

Related Functions

nwds_sql _col unm_bi nd on page 143.
nwds_sql _col um_count on page 143.
nwds_sql _col umm_get on page 146.
nwds_sql _col unm_i nf o on page 149.
nwds_sql _connect onpage 152.

January 2003 161

III NetWeave API| Reference Manual Version 2.0
*

nwds_sql _di sconnect on page 166.
nwds_sql _execut e on page 154.
nwds_sql _f et ch on page 158.

January 2003 162

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 163

III NetWeave API Reference Manual Version 2.0
NWDS_STOP
This function, which isincluded in al NetWeave rel eases, stops the execution of a remote process that
you started.

NWDS_ERRNO nwds_st op
(char *process_nane,
NWDS_| TEM LI ST *itemlist,
NWDS_ CALL_BACK *cal | _back);

Parameter Input | Output Description

process_name The name of the process (system-specific).
v)
To retrieve the name of a process that you started, see
nwds_execute on page 36.

item_list v A pointer to an array of system-specific parameters.
call_back v A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init() and
before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_exit on page4l.

nwds_sl eep on page 136.

nwds_sl eep_cal | back on page 138.
nwds_sl eep_cl ear _cal | back on page 141.
nwds_t i ner_start onpage 169.

nwds_ti ner _st op onpage 172.

January 2003 164

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 165

III NetWeave API| Reference Manual Version 2.0
NWDS SYSTEM TYPE
This function determines the system type on which the designated NetWeave Agent or remote

application is running. If the system type has already been determined, nwds_syst em t ype returns
the previoudly obtained system type information without sending a message to the remote system. The

nwds_system type functionisincluded in al NetWeave releases.

NOTE: Unlikenwds_syst em t ype, the nwds_pi ng function always sends a message to the
Net\Weave Agent.

NWDS_ERRNO nwds_system type

(char *net weave_node,
NWDS_SYSTEM CLASS *system type,
NWDS | TEM LI ST *control _itens,

NWDS CALL_BACK *cal | _back);

Parameter Input | Output Description

netweave_node A section name in the INI file that specifies the parameters
for the communications layer between your application
and the application or NetWeave Agent that corresponds
to the node.

The name is a sequence of letters followed by two colons
and terminated with a NULL byte. The name may be
either a logical name or a node name.

system_type For the complete list of supported system types, see

netweave.h.

control_items v A pointer to an array of system-specific parameters.
Currently there are no items types specific to
nwds_system_type.

call_back v A pointer to a callback structure. If NULL, the call is
synchronous

Return Code (output)
Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_SUCCESSFUL The call completed successfully.

For more information about the return codes, see page 229.

January 2003 166

III NetWeave API| Reference Manual Version 2.0
*

Related Functions

nwds_pi ng on page 131.

January 2003 167

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 168

Illl

NetWeave API Reference Manual Version 2.0
NWDS TIMER_START
Thenwds_ti mer_start function associates a callback with atimer event (identified by a

nwds_handl e) that is returned to the user. When the timer expires, NetWeave cals the user’s
callback function. Thenwds_t i mer _st art functionisincluded in al NetWeave releases.

NWDS_ERRNO nwds_timer_start
(NWDS_M LLI SECONDS ti ner_val ue,

NWDS_HANDLE *handl e,

NWDS | TEM LI ST *control _itens,

NWDS_CALL_BACK *cal | _back);

Parameter Input | Output Description
timer_value v Timeout value, in milliseconds.
handle v The identifier to use for subsequent timer operations.
control_items v A pointer to an array of system-specific parameters:

- NWDS_TIMER_TYPE: a logical value that defines the
timer type.

- NWDS_PERSISTENT: automatically resets the timer
after each expiration.

- NWDS_SINGLE (default): a “one-shot” timer that is set
once and either expires or is stopped. This form of
timer is intended for applications that require a regular
signal.

call_back v A pointer to a callback structure.
Return Code (output)
Return code Description
NWDS_BAD_PARAMETER You are trying to call a function but one of your

parameters is out of range.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

For more information about the return codes, see page 229.

January 2003 169

III NetWeave AP| Reference Manual Version 2.0
*

Related Functions

nwds_exit on page4l.

nwds_sl eep on page 136.

nwds_sl eep_cal | back on page 138.
nwds_sl eep_cl ear _cal | back on page 141.
nwds_st op on page 164.

nwds_ti ner _st op onpage 172.

January 2003 170

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 171

III NetWeave API| Reference Manual Version 2.0
NWDS _TIMER_STOP
This function halts the timer associated with ahandle. It isincluded in al NetWeave releases.

NWDS_ERRNO nwds_ti mer _stop (NWDS_HANDLE) ;

Parameter Input | Output Description

handle v The identifier returned from a call to nwds_timer_start.

Return Code (output)

Return code Description
NWDS_BAD_HANDLE There is no timer associated with the handle.
NWDS_BAD_PARAMETER You are trying to call a function but one of your

parameters is out of range.
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling

nwds_init() and before calling nwds_exit(). Call
nwds_init() and re-issue the NetWeave function call.

NWDS_SUCCESSFUL The timer was stopped successfully.

For more information about the return codes, see page 229.

Related Functions

nwds_exit onpage4l.

nwds_sl eep on page 136.

nwds_sl eep_cal | back on page 138.
nwds_sl eep_cl ear _cal | back on page 141.
nwds_st op on page 164.
nwds_tiner_start onpage 169.

January 2003 172

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 173

{

NetWeave API| Reference Manual

NWDS_TP_ABORT

This function aborts a transaction. It isincluded in al NetWeave releases.

NWDS_ERRNO nwds_t p_abort
(N\\DS_HANDL E t p_handl e,
NWDS | TEM LI ST *control _itens,
NWDS_CALL_BACK *cal | _back);

Parameter Input | Output Description
tp_handle v The handle returned from nwds_tp_start.
control_items v A pointer to an array of system-specific parameters.
call_back y A pointer to a callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code

Description

NWDS_BAD_HANDLE

You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

NWDS_NO_MEMORY

The system is overloaded; process out of memory.

NWDS_NOT_IMPLEMENTED

The function is not available on the current platform.

NWDS_NOT_INITIALIZED

All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_PENDING

The operation has been initiated successfully. Final status
and data will be delivered to the specified callback function.

NWDS_SUCCESSFUL

The call completed successfully.

For more information about the return codes, see page 229.

Related Functions

nwds_t p_conmit onpage 175.

nwds_tp_resune onpage 176.

nwds_t p_start onpagel77.

nwds_t p_st at us on page 180.

January 2003

174

III NetWeave API Reference Manual Version 2.0
NWDS_TP_COMMIT
This function commits a transaction. Any file changes associated with the transaction identifier are

made at this point and become visible to other users. The nwds_t p_conmi t function isincluded in
all NetWeave releases.

NWDS_ERRNO nwds_tp_comni t

(N\WDS_HANDLE t p_handl e,
NWDS | TEM LI ST *control _itens,
NWDS_CALL_BACK *cal | _back);
Parameter Input | Output Description
tp_handle v The handle returned from nwds_tp_start.
control_items v A pointer to an array of system-specific parameters.
call_back y A pointer to a callback structure. If NULL, the call is
synchronous.
Return Code (output)
Return code Description
NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.
NWDS_NO_MEMORY The system is overloaded; process out of memory.
NWDS_NOT_IMPLEMENTED The function is not available on the current platform.
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling

nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_PENDING The operation has been initiated successfully. Final status
and data will be delivered to the specified callback function.

For more information about the return codes, see page 229.

Related Functions

nwds_t p_abort on page 174.
nwds_t p_resune on page 176.
nwds_tp_start onpagel77.
nwds_t p_status onpage 180.

January 2003 175

III NetWeave AP| Reference Manual Version 2.0
NWDS_TP_RESUME
Use this function, which isincluded in al NetWeave releases, to resume atransaction. The

nwds_t p_r esune function applies only to Tandem.

NWDS_ERRNO nwds_t p_resune

(N\\DS_HANDLE t p_handl e,

NWDS | TEM LI ST *control _itens,

NWDS CALL_BACK *cal | _back);

Parameter Input | Output Description
tp_handle v The handle returned from nwds_tp_start.
control_items v A pointer to an array of system-specific parameters.
call_back v A pointer to a callback structure. If NULL, the call is

synchronous.

Return Code (output)

Return code Description
NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.
NWDS_NOT_IMPLEMENTED The function is not available on the current platform.
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_t p_abort onpage 174.
nwds_t p_conm t on page 175.
nwds_t p_start onpagel77.
nwds_t p_stat us on page 180.

January 2003 176

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 177

III NetWeave API Reference Manual Version 2.0
L]
NWDS TP _START
This function starts a transaction at a remote host that supports a transaction protection (TP) monitor.

On Tandem, if NetWeave handles any of the I/O, an application must call nwds_t p_start instead

of the Guardian begi nt ransacti on. Thenwds_t p_start functionisincluded in al NetWeave
releases.

NWDS_ERRNO nwds_tp_start

(char *net weave_node,
NWDS_HANDLE *t p_handl e,
NWDS_SI ZE max_name_| engt h,
char *transacti on_nane,
NWDS | TEM LI ST *control _itens,

NWDS_CALL_BACK *cal | _back);

Parameter Input | Output Description

netweave_node v A section name in the INI file that specifies the

parameters for the communications layer between your
application and the NetWeave agent. The name may be
either a logical name or a node name.

tp_handle v The handle to be used with subsequent function calls.

max_name_length v The maximum number of bytes that can be copied to the
transaction_name parameter.

transaction_name v A printable representation of the transaction_id. It is
terminated with a NULL byte.

control_items v A pointer to an array of system-specific parameters.

call_back v A pointer to a callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description
NWDS_NOT_IMPLEMENTED The function is not available on the current platform.
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling

nwds_init() and before calling nwds_exit(). Call
nwds_init() and re-issue the NetWeave function call.

For more information about the return codes, see page 229.

January 2003 178

III NetWeave AP| Reference Manual Version 2.0
*

Related Functions

nwds_t p_abort on page 174.

nwds_t p_conmit on page 175.

nwds_t p_resune onpage 176.
nwds_t p_st at us on page 180.

January 2003 179

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 180

III NetWeave API Reference Manual Version 2.0
L]
NWDS TP _STATUS
This function returns information about an active transaction, not about transactions that have aready

committed or aborted. Thenwds_t p_st at us function isincluded in al NetWeave releases.

NWDS_ERRNO nwds_t p_stat us

(char *net weave_node,
char *transacti on_nane,
NWDS | TEM LI ST *control _itens,

NWDS_CALL_BACK *cal | _back);

Parameter Input | Output Description

netweave_node v A section name in the INI file that specifies the
parameters for the communications layer between your
application and the NetWeave agent. The section
name may be either a logical name or a node name.

transaction_name v A printable representation of the transaction_id.

control_items v A pointer to an array of system-specific parameters.

call_back v A pointer to a callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description
NWDS_NOT_IMPLEMENTED | The function is not available on the current platform.
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init()

and before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_t p_abort onpage174.
nwds_t p_conmit on page 175.
nwds_t p_r esune on page 176.
nwds _tp_start onpagel77.

January 2003 181

III NetWeave API Reference Manual Version 2.0
NWDS TRIGGER_CANCEL
This function dissociates a callback function from an event on a particular file. The

nwds_tri gger_cancel functionis provided as part of NetWeave's Data Server option.

NWDS_ERRNO nwds_tri gger _cancel
(N\\DS_HANDLE file_handl e,
NWDS | TEM LI ST *control _itens,
NWDS CALL_BACK *cal | _back);

Parameter Input | Output Description
file_handle v The handle from a call to nwds_file_open.
control_items v A pointer to an array of system-specific parameters.
call_back v A pointer to a callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description
NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.
NWDS_NOT_IMPLEMENTED The function is not available on the current platform.
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_tri gger _read on page 184.
nwds_tri gger _regi st er onpage 186.

January 2003 182

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 183

III NetWeave API Reference Manual Version 2.0
NWDS_ TRIGGER_READ
This function returns the old and/or new records associated with the following trigger events:

- Add: acopy of the new record is returned in the new_buf f er .
Delete: a copy of the deleted record is returned inthe ol d_buf f er.
Update: a copy of the original record isinthe ol d_buf f er and a copy of the changed record
isinthenew buffer.

NOTE: Use the register to determine whether you should be passing old and/or new buffers.
Thenwds_tri gger _read functionis provided as part of NetWeave's Data Server option. A

nwds_tri gger _read cdlisaways synchronous because NetWeave queues the record(s) for the
application before caling the callback from nwds_tri gger regi ster.

NWDS_ERRNO nwds_tri gger _read

NWDS_HANDLE file_handl e,
NWDS_FI LTER_CLASS *trigger_type,
NWDS_SI ZE maxi mum_| engt h_new buffer,
voi d *new_buf fer,
NWDS_SI ZE *actual _| engt h_new_buffer,
NWDS_ROW VERSI ON *new_r ow_ver si on,
NWDS_SI ZE maxi mum_| engt h_ol d_buffer,
voi d *ol d_buffer,
NWDS_SI ZE *actual _| ength_ol d_buffer,
NWDS_ROW VERSI ON *ol d_r ow_versi on,
NWDS_TRANS | D *transaction_id,
NWDS | TEM LI ST *control _itens);
Parameter Input | Output Description
file_handle v The handle returned from a call to
nwds_file_open.
trigger_type v The trigger type of the particular change to the
file.
maximum_length_new_buffer v The maximum number of bytes that may be
copied to new_buffer. If the record exceeds this
size, only maximum_length_new_buffer bytes
are copied to the buffer and
NWDS_DATA_ OVERFLOW is returned.
new_buffer v An array in the user's data space where
NetWeave will put the new record image.
actual_length_new_buffer v The number of bytes written to new_buffer.
new_row_version - An identifier to pass on update to synchronize
updates from multiple users.

January 2003 184

III NetWeave API Reference Manual Version 2.0
L]
Parameter Input | Output Description
maximum_length_old_buffer v The maximum number of bytes that may be
copied to old_buffer. If the record exceeds this
size, only maximum_length_old_buffer bytes

are copied to the buffer and
NWDS_DATA_OVERFLOW is returned.

old_buffer v An array in the user's data space where
NetWeave will put the original record image.

actual_length_old_buffer v The number of bytes written to old_buffer.

old_row_version v An identifier to pass on update to synchronize
updates from multiple users.

transaction_id v The transaction name returned from a call to
nwds_tp_start.

control_items v A pointer to an array of system-specific
parameters.

Return Code (output)
Return code Description
NWDS_NOT_IMPLEMENTED The function is not available on the current platform.
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

For more information about the return codes, see page 229.

Related Functions

nwds_trigger_cancel onpage182.
nwds_tri gger_regi st er onpage 186.

January 2003 185

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 186

particular file. An application process that wants to monitor changes to the file must open the file. Call
nwds_t ri gger _r ead to read the data that was the basis for the trigger event. The
nwds_tri gger _regi ster functionisprovided as part of NetWeave' s Data Server option.

III NetWeave API Reference Manual Version 2.0
NWDS TRIGGER_REGISTER
This function associates a callback function with an event (a combination of add, delete, update) on a

NWDS_ERRNO nwds_tri gger _register

(NWDS_HANDLE file_handle,

NWDS_FI LTER_CLASS trigger_type,

NWDS_| TEM LI ST *itemlist,

NWDS_CALL_BACK *cal | _back,

NWDS_ CALL_BACK *dat a_r ecei ved);

Parameter Input | Output Description
file_handle v The identifier returned from a call to nwds_file_open.
trigger_type v Mask of trigger types: nwds_trigger_update,

nwds_trigger_write, and/or nwds_trigger_delete. For the
complete list of trigger functions, see page 14 or

netweave.h.
item_list v A pointer to an array of system-specific parameters.
call_back v A pointer to a callback structure. If NULL, the call is
synchronous.
data_received v A pointer to the callback structure containing the function to

call when a trigger message is received. For example, this
callback function might call nwds_trigger_read to retrieve
the message.

Return Code (output)

Return code Description
NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.
NWDS_NOT_IMPLEMENTED The function is not available on the current platform.
NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling

nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_INVALID_OPERATION The attempted operation is not appropriate to the target
object.

For more information about the return codes, see page 229.

January 2003 187

III NetWeave API| Reference Manual Version 2.0
*

Related Functions

nwds_trigger _cancel on page 182
nwds_tri gger _r ead on page 184.

January 2003 188

Illl

NetWeave API Reference Manual Version 2.0
Iltem Types and Values
In netweave.h, constants are defined for item types and values. Anitem list is an array of structures that

declare the parameters that control a remote function cal or receive information from a remote function.
Theitem list structure can accommodate both constant and variable length parameter values.

Let'slook at the definition of asingle element of an item list called nwds_i t em | i st usngtheC
si zeof operator for numeric values:

typedef struct {

NWDS_| TEM _TYPE type;
NWDS_SI ZE | engt h;
voi d *item
} NWDS_| TEM LI ST;

Parameter Description
item type Identifies the parameter that is being supplied in this element.
item_length The number of bytes in the item_buffer that constitute the value of the
parameter.
item A pointer to a memory location where the value of the parameter is
stored.

Some common item list definitions appear on the next page.

January 2003 189

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 190

III NetWeave AP| Reference Manual Version 2.0
*

Common Item List Definitions

Assigning a Constant Length Value to a Parameter

| ong RBA; /*RBA holds the relative byte address for UNIX flat file.*/
NWS | TEM LIST | _list [2];

/*Load the itemlist to pass to nwds_file_position.*/
I _list[] O] . type = NWDS_CFI LE_FTELL;

| list[] O] . length = sizeof(long);

| list[] O] . item= &RBA;

I list][1] . type = NAWDS END OF_LIST; /*termnates the |ist—equired*/

Assigning a Variable Length Value to a Parameter

short primary _key = 0; /*Enscribe primary keyspecifier*/
short exact _nmode = NWDS_TAN EXACT_PCS;

[*primary_key value will be set to the key value to match*/
char primary_key val ue [30];

NDS [TEMLIST | _list [4];

/*Prepare the itemlist to pass to nwds_file_position.*/
| list[] O] . type = NWDS_TAN KEVYI D,

| list[] O] . length = (NWDS_SI ZE) si zeof (short);

| list[] O] . item= &prinmary_key;

| list[1] . type = NV\DS_TAN MODE;
I list[] 1] . length = (N\DS_SI ZE) si zeof (short);
I list[1] item = &exact _node;

I list[] 2] . type = N\DS_TAN KEYVALUE;
/*1 list][] 2] . length—set by the progrant/
I _list][] 2] . item= primary_key_val ue;

| list[3] . type = NWDS_END OF_LIST;/*term nates the list — required*/

January 2003 191

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 192

III NetWeave API Reference Manual Version 2.0
L]
Message Queue (FIFO) Files
The FIFO (for First-I n, First-Out) messaging queue provides a simple and robust interface for store-

and-forward message delivery in a heterogeneous computing environment. A process that writesto a
FFO is called a producer; a process that reads from a FIFO is caled a consumer. Messages written to a
FIFO are appended to the end (tail) of the queue, while messages read from a FIFO are taken from the
beginning (head) of the queue.

A FIFO queueis implemented as aring of segments. Y ou specify the size and number of segments
when you create the FIFO, and each segment is stored as arecord in a special file that NetWeave
maintains. The local file system determines the maximum segment size (i.e. the maximum record size
that is supported by the file system). One message may span multiple segments. The maximum message
szeisnwds_max_user _si ze.

When you set up the FIFO queue, make it local to a producer and remote to a consumer. This way, even
if the communications layer fails, the producer is not interrupted. When communications are restored,
the consumer(s) may resume processing the queue.

There are two ways to read messages from the queue:

- Using asingle call to read the message and advance the head pointer. This gives better
throughput and is intended for applications where more than one consumer process reads
messages from the queue.

- Using two cdls:. the first to read the message, and the second (hwds_fi | e_position)to
advance the pointer. The two-call method (also called transaction mode) supports transaction
processing because you can continue to reread a message until the head pointer is advanced to
the next one.

For applications that read a queue by calling nwds_fi | e_r ead asynchronously, NetWeave allows
the read to complete either immediately with the error NIDS_ECF, or whenever a producer adds the
next message to the queue. Because the read is asynchronous, the program is not blocked while waiting
for its next message. Also, because NetWeave completes the read operation when the next message is
added, the program does not poll the queue when it is empty.

Use the following functions for the message queue option:

Function Description
nwds_file_close Closes a message queue.
nwds_file_create Creates a message queue.
nwds_file_info Retrieves information about a queue.
nwds_file_open Opens a message queue.
nwds_file_position Completes a transaction involving a queue.
nwds_file_read Reads the first message from the queue.
nwds_file_remove Purges a message queue.
nwds_file_write Appends a message to the end of the queue.

January 2003 193

III NetWeave AP| Reference Manual Version 2.0
*
I Generic C Files
A Cfileisastream of bytes without any structure or indexing. Most platforms implement flat file

structures that may be accessed from the standard 1/0 library of C.

January 2003 194

III NetWeave AP| Reference Manual Version 2.0
NetWeave Kernel Functions for Windows NT
A NetWeave kernel function provides access to those proprietary features of the NT operating system

that applications must share with NetWeave. NT isthe only Microsoft Windows oper ating system for
which kernel functionsare provided.

Y ou can use kernel functions to integrate asynchronous applications with NetWeave' s API. Systems
applications that need to wait on an event must use the NetWeave kernel functions to define both the
object, and the callback function to associate with the object.

To implement fully asynchronous operation, NetWeave usesthe NT systems call

Wai t For Mul ti pl ebj ect s and what are called NT-waitable objects. (In the NT environment, you
can use waitable objects to signal a change of state— typically, to notify an application that an OS
function call has completed.) Because NetWeave a so uses waitable objects to synchronize its activities,
thereisapotential conflict between the NetWeave library and any applications that use NetWeave
function calls. The kernel routines provide away for the application to tell NetWeave about additional
objects that it needsto wait for.

This section discusses the following kernel functions:

- nwds_nt_cl ear _event
- nwds_nt _defi ne_event

January 2003 195

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 196

III NetWeave API| Reference Manual Version 2.0
*

NWDS_NT_CLEAR_EVENT

This function deregisters an object from the list of application objects on which NetWeave has to wait.

NWDS_ERRNO nwds_nt _cl ear _event (

| ong hEvent);
Parameter Input | Output Description
hEvent y The object (Win32 handle) to be removed from the list
on which NetWeave waits.

Return Code (output)

Return code Description
NWDS_SUCCESSFUL The object was removed.
NWDS_PROCESS_NOT_FOUND Invalid or unknown hEvent.

January 2003 197

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 198

for. The callback function is an application function that NetWeave will call when the defined event is
notified.

III NetWeave API Reference Manual Version 2.0
NWDS_NT_DEFINE_EVENT
Thenwds_nt _defi ne_event function specifies which application objects NetWeave must wait

NWDS_ERRNO nwds_nt _defi ne_event (
| ong hEvent,
NWDS_CALL_BACK *conpl etion);

Parameter Input | Output Description
hEvent v The Win32 handle to monitor.
completion v A pointer to the callback structure. This pointer cannot
be NULL.
Return Code (output)

Return code Description
NWDS_SUCCESSFUL Registration was completed successfully.
NWDS_NO_MEMORY Fatal error: insufficient heap space (the system is

overloaded).
NWDS_DUPLICATE_PROCESS The Win32 handle is already registered.

January 2003 199

A NetWeave kernel function provides access to some proprietary feature of the operating system that an
application must share with NetWeave. This section describes the NetWeave kernel functions for UNIX

systems including Solaris, HPUX, AlX, Linux and DECUNIX TRUG64.

Y ou can use kernel functions to integrate asynchronous applications with NetWeave' s APIl. NetWeave
uses the select() function in the socket's library to wait for events to occur asynchronoudly. Y ou may
add your own socket to the list of sockets on which NetWeave waits. Because NetWeave must control
the waiting process, any systems applications that need to wait on a socket event must use the

NetWeave kernel functions to do so.
This section discusses the following kernd functions:

Illl

NetWeave API| Reference Manual Version 2.0
III NetWeave Kernel Functions for UNIX

- nwds_ux_cl ear _event
- nwds_ux_defi ne_event

January 2003 200

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 201

III NetWeave API Reference Manual Version 2.0
III NWDS UX_CLEAR_EVENT
Thenwds_ux_cl ear _event function removes a socket descriptor from the list of applicationfile

descriptors that NetWeave is waiting for.

NWDS_ERRNO nwds_ux_cl ear _event (

i nt fileDescriptor,
i nt r eadMask,
i nt writeMask) ;
Parameter Input | Output Description
fileDescriptor v The descriptor to remove from the list.
readMask v Set to True or False to match the original setting when
the mask was defined in nwds_ux_define_event.
writeMask v Set to True or False to match the original setting when
the mask was defined in nwds_ux_define_event.

Return Code (output)

Return code Description
NWDS_BAD_PARAMETER readMask or writeMask is not specified.
NWDS_SUCCESSFUL The event flag was cleared.

January 2003 202

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 203

III NetWeave API Reference Manual Version 2.0
NWDS_UX_DEFINE_EVENT

|

Thenwds_ux_defi ne_event functiontells NetWeave which application sockets it has to wait for.
The read callback function is an application function that NetWeave calls when the socket has data. The
write callback function is an application function that NetWeave calls when the socket becomes
writeable.

If the permanent parameter is TRUE, you must use nwds_ux_cl ear _event to remove the socket
descriptor from the list for which NetWeave waits. If FALSE, NetWeave waits once and then removes
the descriptor automatically.

NWDS_ERRNO nwds_ux_defi ne_event (
i nt fileDescriptor,
i nt per manent,
NWDS_CALL_BACK *readConpl eti on,
NWDS_CALL_BACK *writeConpl etion);

Parameter Input | Output Description

fileDescriptor v The file descriptor that NetWeave must monitor.

permanent v Set to TRUE if you intend to remove this event by a
call to nwds_ux_clear_event.

readCompletion v A pointer to the read callback structure. It cannot be
NULL.

writeCompletion v A pointer to the write callback structure. It cannot be
NULL.

Return Code (output)

Return code Description
NWDS_BAD_PARAMETER One of the completion structures is invalid.
NWDS_NO_MEMORY Fatal error: insufficient heap space.

January 2003 204

III NetWeave API Reference Manual Version 2.0
NetWeave Kernel Functions for DEC, VMS, and OpenVMS
A NetWeave kernel function provides access to those proprietary features of the operating system that

applications must share with NetWeave. This section describes the NetWeave kernd functionsfor VM S
and OpenVMS.

Y ou can use kernel functions to integrate asynchronous applications with NetWeave' s APIl. NetWeave
uses Asynchronous System Traps (ASTs) to notify akerne layer that read or write has completed on a
communications channel. The NetWeave kernel layer uses event flags to coordinate and synchronize
service calls made on behaf of remote applications. Because NetWeave must control the waiting
process, any systems applications that need to wait on an event must use the NetWeave kerndl functions
to do so.

In the DEC environment, you can use waitable objects to signal a change of state —typically, to notify
an application that an OS function call has completed. Because NetWeave a so uses event flags to
synchronize its activities, there is a potential conflict between the NetWeave library and any
applications that use NetWeave function calls. The kernel routines provide a mechanism that the
application can use to tell NetWeave about additional event flags that it needs to wait for.

This section discusses the following kernel functions:

-nwds_vns_cl ear _event
-nwds_vns_defi ne_event

January 2003 205

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 206

I

|

NetWeave API| Reference Manual Version 2.0

NWDS_VMS_CLEAR_EVENT

Thenwds_vms_cl ear _event function deregisters an event flag from the list of application event

flags that NetWeave is waiting for.

NWDS_ERRNO nwds_vms_cl ear _event (

i nt event _fl ag);
Parameter Input Output Description
event_flag v The event flag number to be cleared.

Return Code (output)

Return code

Description

NWDS_PROCESS_NOT_FOUND

Invalid or unknown event flag number.

NWDS_SUCCESSFUL

The event flag was cleared.

January 2003

207

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 208

III NetWeave API Reference Manual Version 2.0
NWDS VMS_DEFINE_EVENT
Thenwds_vns_defi ne_event function tells NetWeave which application event flagsit hasto

wait for. The callback function is an application function that NetWeave calls after an event flag has
been set. NetWeave does not set or clear an application event flag.

NWDS_ERRNO nwds_vns_defi ne_event (
i nt event fl ag,
NWDS_CALL_BACK *conpl etion);

Parameter Input | Output Description
event_flag v The event flag number that NetWeave must monitor.
completion v A pointer to the callback structure. It cannot be NULL.

Return Code (output)

Return code Description
NWDS_DUPLICATE_PROCESS The event flag is already set.
NWDS_NO_MEMORY Fatal error: insufficient heap space.
NWDS_SUCCESSFUL The event flag was set.

January 2003 209

III NetWeave AP| Reference Manual Version 2.0
NetWeave Kernel Functions For Tandem
A NetWeave kernel function provides access to some proprietary feature of the operating system that an

application must share with NetWeave. Y ou can use kernel functions to integrate asynchronous
applications with NetWeave' s API. The Kernel Library provides the callback mechanism for the
Tandem. Because the NetWeave function calls use the kernel library to implement the asynchronous
API, you must use the kernel library for multithreaded asynchronous applications.

There are two distinct groups of functionsin the kernel library for Tandem. One group manages
asynchronous operations on files; the other manages asynchronous responses to system messages. Each
group has a unique data structure and unigue function prototype associated with it. First we describe the
structure and prototype associated with asynchronous file 1/0. Then we will review the structure and
prototype for processing system messages.

This section discusses the following kernel functions:

- nwds_kernel _cal | _back

- nwds_kernel recv_call back

- nwds_tandem awai ti ox

- nwds_tandem cl ear _events

- nwds_tandem cl ear _system events
- nwds_t andem defi ne_event

- nwds_t andem defi ne_syst em event
- nwds_t andem r epl yx

- nwds_t andem r ecei vei nfo

January 2003 210

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 211

III NetWeave API Reference Manual Version 2.0
NWDS_KERNEL_CALL_BACK
This structure has two elements that are analogous to the elements of the regular callback structure.

User _cont ext isapointer to alocated memory where the application identifies the situation in
which thisfile I/0O event occurs. The calback procedure is unique to file I/O events.

Typedef struct {
NWDS_CONTEXT user Cont ext,
NWDS_KERNEL_CALL_BACK _PROC *procedur e

} NWDS_KERNEL_CALL_BACK;

The procedure prototype for aNVDS_ KERNEL _CALL_BACK PRCClooks like this:
typedef void (NWDS_KERNEL_CALL_ BACK PROC) (

short fil eHandl e,

voi d *puffer,

short | engt h,

short guar di anError,

| ong user Tag,

voi d *user Cont ext

)

Parameter Input Output Description

fileHandle v The Guardian file number where an 1/O has just
completed.

buffer v The address of an area in the user’s data space where
the message is returned.

length v The number of bytes in the message in the buffer.

guardianError v The Guardian error code associated with the 1/0.
0 means success; any other value indicates a problem.

userTag v The tag specified when the 1/0O was initiated by a call to
NWDS_TANDEM_DEFINE_E VENT.

userContext v The same pointer as the structure’s userContext
parameter. Whatever you pass to NetWeave, NetWeave
returns to you.

January 2003 212

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 213

Guardian operating system posts special system messages to an application to aert it to unsolicited
external events. The functions NVDS_ TANDEM DEFI NE_SYSTEM EVENT and

NWDS_TANDEM CLEAR _SYSTEM EVENTS enable an application to tell NetWeave which system
messages (events) it wishes to monitor and how to react to them.

III NetWeave API Reference Manual Version 2.0
NWDS_KERNEL_RECV_CALL_BACK
Applications use this structure to tell NetWeave how to respond to system messages. The Tandem

typedef struct {
NWDS_CONTEXT user Cont ext ;
NWDS_KERNEL_RECV_CALL_BACK_PROC *procedur e;
} NWDS_KERNEL_RECV_CALL_BACK;

The user Cont ext isapointer to the application's memory space where the application identifies
what is happening. The calback procedure contains parameters designed to return all the information
that Guardian provides with the message.

typedef NWDS_MSG USED (NWDS_KERNEL_RECV_CALL_BACK_PROC) (

voi d *puffer,

short | engt h,

short guar di anError,

| ong user Tag,

NWDS_RECEI VEI NFO *info,

voi d *user Cont ext

)

Parameter Input | Output Description

buffer v The address of an area in the user’s data space where the
message is returned.

length v The number of bytes in the message in the buffer.

guardianError v The Guardian error code associated with the 1/0.
0 means success; any other value indicates a problem.

userTag v The tag specified when the 1/0O was initiated by a call to
NWDS_TANDEM_DEFINE_E VENT.

info This structure contains the information obtained from

v) .

Guardian, described below.

userContext v The userContext you passed to NetWeave is returned to
you.

The NV\DS_RECEI VEI NFO structure contains information obtained from Guardian on the application's

behalf. NetWeave calls the Guardian procedure FI LE_GETRECEI VEI NFOto populate this structure.
For detailed information about this structure, see the Guardian Procedures Calls manual. NetWeave

January 2003 214

typedef struct {

Illl

NetWeave API Reference Manual Version 2.0
L]
provides the function N\DS_TANDEM_RECEI VEI NFO'to retrieve this information about a user
message. For more information about this function, see page 227.

short i o_type;

short max_reply_count;

short nsg_t ag;

short file_num

short sync_id[2];

short sender _process_handl e[10] ;
short open_| abel ;

} NWDS_RECEI VEI NFO,

Parameter Description
io_type Type of I/O caller.
max_reply_count Maximum number of bytes for call to reply().
msg_tag Tag to use in call to reply().
file_num Sender's file number.
sync_id The sync ID associated with this message.
sender_process_handle Process handle of the process that sent the last message.
open_label The value assigned by the application to the open connection on
which the received message was sent.

The user's callback procedure must return a value that NetWeave interrogates to determine whether
additional actions are required. The legitimate return codes for your procedures are:

NWDS_RECV_MBG USED =1
NWDS_RECV_MBG NOT_USED = 2

January 2003 215

complete an asynchronous /0. (For COBOL users on Tandem, the function is named
nwds_t and_awai ti ox.)

III NetWeave API| Reference Manual Version 2.0
NWDS _TANDEM_AWAITIOX
Use the N\VIDS_ TANDEM AWAI TI OX function instead of the standard Guardian AWAI TI OX cdl to

NVDS_ERRNO NWDS_TANDEM AWAI TI OX (

short *user _fil enunber,

voi d *user _buffer,

short *user _buffer_Iength,

| ong *user _tag,

NWDS_RECEI VEI NFO **recei vei nf o,

short *user _error,

| ong user _tineout,

short | oop_forever);

Parameter Input Output Description
user_filenumber v The Guardian file number of the 1/0O that just
completed.

user_buffer y The address of the area where the message is stored.

Note for COBOL users: this parameter does not exist
for the COBOL version of this call.

user_buffer_length v The length of the message in the user_buffer.
user_tag v The tag associated with the 1/0 when it was initiated.
receiveinfo v The location of the NWDS_RECEIVEINFO structure that

describes this request. For more information, see
NWDS_KERNEL_RECV_CALL_BACK on page 214

user_error v The Guardian error code from the I/O completion.

user_timeout The length of time (in hundredths of a second) to wait
for the I/O to complete. If this value is negative,
NetWeave waits forever.

loop_forever y A logical that implements polling. If TRUE, the call is
repeated with the same timeout value until an I/O
completes.

January 2003 216

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 217

Thenwds_t andem cl ear _event s function removes the callback(s) associated with either all
callbacks, or a specified file number.

III NetWeave API Reference Manual Version 2.0
|" NWDS_ TANDEM_ CLEAR_EVENTS

NWDS_ERRNO NWDS_TANDEM CLEAR_EVENTS (

short file_number,
| ong tag
short error);
Parameter Input | Output Description
file_number The Guardian file number returned from OPEN.
- v : o
If negative, all callbacks on all the user’s files are cleared.
tag v The tag specified when a particular I/O was initiated by a
call to NWDS_TANDEM_DEFINE_EVENT. If negative, all
callbacks for the file_number are cleared.
error v A Guardian error code to pass to the callback(s).

January 2003 218

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 219

III NetWeave API| Reference Manual Version 2.0
*

NWDS_TANDEM_CLEAR_SYSTEM_EVENTS

This function removes the callback associated with a specified Guardian system error number. For more
information, see nwds_Tandem def i ne_syst em event on page 222.

NWDS_ERRNO NWDS_TANDEM CLEAR_SYSTEM EVENTS (
Short syst em nessage_nunber,
NWDS_KERNEL RECV_CALL_BACK *cal | _back);

Parameter Input Output Description

system_message_number v The Guardian system error number whose

associated callback you want to remove. If this
number is negative, all callbacks on all the
user’s system error codes are cleared.

call_back The pointer to the callback function that a call
to NWDS_TANDEM_DEFINE_SYSTEM_EVENT
originally associated with the system message
code.

January 2003 220

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 221

Thenwds_t andem def i ne_event function associates an I/O operation on the specified file with
acallback function and specific program context. When the I/O compl etes, the callback function is
called with one argument being the program context.

III NetWeave API Reference Manual Version 2.0
NWDS TANDEM DEFINE EVENT

|

An application that calls the NetWeave APl must never call the Guardian procedure awai ti o(X).
If your application must wait for 1/0 on afile unknown to NetWeave, you must call the NetWeave
function N\DS_TANDEM_AWAI Tl OX

NWDS_ERRNO NWDS_TANDEM DEFI NE_EVENT (

short file_nunber,
| ong tag,

| ong ti meout,
short per manent,
NWDS_| TEM LI ST *itemlist,

NWDS_KERNEL_CALL_BACK *cal | _back);

Parameter Input | Output Description
file_number v The Guardian file number returned from OPEN.
tag v The tag specified when the 1/O was initiated by a call to
NWDS_TANDEM_DEFINE_E VENT.
timeout v The length of time in centi-seconds to wait for the 1/0 to
complete. If timeout is negative, wait is forever.
permanent v A logical that indicates whether the callback is

associated with only the next I/O or all subsequent I/O
on this file number. Two constants are provided for this
parameter:

- NWDS_NOT_PERMANENT (default): the callback
applies only to the next I/O
- NWDS_PERMANENT: the callback is associated with

all I/0s
item_list v A pointer to an array of system-specific parameters. No
item types are presently defined for the kernel library.
call_back v A pointer to the kernel callback structure. Unlike the

standard API, this cannot be NULL.

January 2003 222

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 223

III NetWeave API Reference Manual Version 2.0
NWDS TANDEM DEFINE_SYSTEM EVENT
Thenwds_t andem defi ne_system event function provides notification of system messages.

This function call must include the system message number and the callback function pointer, and
indicate whether this registration is permanent.

NWDS_ERRNO NWDS_TANDEM DEFI NE_SYSTEM EVENT (

short syst em nmessage_nunber,
short per manent
NWDS_| TEM LI ST *itemli st,

NWDS_KERNEL_RECV_CALL_BACK *cal | _back);

Parameter Input | Output Description
system_message_number v A Guardian system number.
permanent y A logical that indicates whether the callback is

associated with only the next I/O or all
subsequent I/O on this system message
number. Two constants are provided for this
parameter:
- NWDS_NOT_PERMANENT: the callback
applies only to the next I/0O
- NWDS_PERMANENT (default): the callback
is associated with all 1/0Os

item_list A pointer to an array of system-specific
parameters. No item types are presently defined
for the kernel library.

call_back A pointer to a kernel receive callback structure.
This cannot be NULL.

January 2003 224

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 225

III NetWeave API Reference Manual Version 2.0
NWDS TANDEM REPLYX
Thenwds_t andem r epl yx function, which mimics the behavior of Guardian’sr epl yx system

cal, gives Pathway server programmers additional flexibility and an dternativeto nwds_i pc_write
for returning replies. To use nwds_t andem r epl yx, you should retrieve at least two parameters
(max_reply_count andnsg_t ag) fromthenwds_r ecei vei nf o structure associated with the
original request message.

For more information, see nwds_t andem r ecei vei nf o on page 227.

Typedef struct {

short io_type; /[*returns type of I/Ocaller used (wite,
writeread, etc)*/

short max_reply_count;/*returns max # bytes for call to reply()*/

short msg_t ag; [*returns tag to use in call to reply()*/

short file_num [*returns sender’s file numt/

short sync_id[2]; /*The sync | D associated with this nessage*/

short sender _process_handl e[10] ;

short open_| abel ;

} NWDS_RECEI VEI NFG,

NVDS_ERRNO NWDS_TANDEM REPLYX (

short tag,
short reply_length,
voi d *reply,
short error);
Parameter Input | Output Description
tag v The message tag parameter (msg_tag) from
nwds_receiveinfo.
reply_length y The length in bytes of the reply message. This amount
must not exceed the max_reply_count from
nwds_receiveinfo.
reply v The address of the location containing the reply.
error v This parameter may contain a Guardian error code to
return to the calling application.

January 2003 226

III NetWeave API| Reference Manual Version 2.0
I.I

January 2003 227

Illl

NetWeave API Reference Manual Version 2.0
NWDS_ TANDEM RECEIVEINFO
Thenwds_t andem r ecei vei nf o function gives Pathway server programmers more information
about request messages. This function mimics the behavior of Guardian's

FI LE_GETRECEI VEI NFO_ system call and returns the following information:

typedef struct {

short io_type;

short max_reply_count;

short nmsg_t ag;

short file_num

short sync_id[2];

short sender _process_handl e[10] ;
short open_| abel

} NWDS_RECEI VEI NFG,

NVDS_ERRNO NWDS_TANDEM REPLYX (
NWDS_HANDLE handl e,
NWDS_RECEI VEI NFO *recei ve_i nfo);

Parameter Input Output Description
handle v The process handle returned from the call to
nwds_ipc_accept.
receive_info v v The location where the receive_info structure will be
stored.

January 2003 228

III NetWeave API| Reference Manual
*

Return Codes and Recovery

Version 2.0

The table below lists the NetWeave return codes provided by the function nwds_err or _t ext and
gives suggestions for recovering from common problems. Please keep in mind the following:

Where recovery islisted as “None,” a system fault has occurred that an application would not
or could not normally address. If the error is associated with a connection or afile, the
associated entity should be closed and re-opened. If the error occurs outside of a connection or
file (for example, in a general purpose facility such as nwds init), the application should
serioudy consider logging a message and terminating.

Codes marked Discontinued are no longer used and should never occur.

The designation Exceptional user condition means that an internal fault has occurred. Please
contact NetWeave support and be ready to provide the error traces and INI file for the program

that received the error.

Return code

It means

Suggested recovery

NWDS_ABORTED_BY_USER

Transaction is
aborted by user

None.

NWDS_ACCESS_VIOLATION Access File security is enabled and the current user does
violation not have access to the Guardian file. You should
log in as a user who has the proper authority to
view or update the file.
NWDS_ALREADY_EXISTS File already None. This condition is returned when someone
exists tries to create a file or queue that already exists.

NWDS_BAD_ADDRESS

Invalid network

Exceptional user condition. Please contact

address NetWeave support with the error traces and INI
file for the program that received the error.
NWDS_BAD_HANDLE Invalid You are trying to reuse a handle that has
NetWeave become invalid, usually because a file or
handle connection was closed. Usually indicates a

coding mistake by the user.

NWDS_BAD_INI_PARAMETER

Invalid/missing
INI file
parameter

See the error log to determine which INI file
parameter is improper. Check and update your
INI file, then retry the application.

NWDS_BAD_PARAMETER

Bad parameter
passed

You are trying to call a function but one of your
parameters is out of range. Usually indicates a
coding mistake by the user. For more
information, see the error log.

NWDS_BAD_PROCESS_NAME

Bad process
name

Indicates a coding mistake by a Alpha/Open
VMS user. You are trying to start a process with
a name that is already in use. Stop the older
version of the program.

January 2003

229

NetWeave API| Reference Manual

Version 2.0

Return code

It means

Suggested recovery

NWDS_BAD_PROTOCOL

Invalid network
protocol

You are trying to make a connection over a
communications protocol that your library does
not support. Check for errors in your INI file.

NWDS_BAD_SERVER_NAME

Invalid
NetWeave
server name

This is usually a coding error that results from
passing a name that is either empty or too long.
For more information, see the error log

NWDS_

LOCK

CANNOT_REGION_

NWDS_CI2_NOT_LOCKED

NWDS_

Cl2_NOT_OUR_LOCK

NWDS_CI2_SELF_LOCKED

Discontinued

NWDS._|

DATA_OVERFLOW

Data overflow

More data is available than the user is prepared
to receive. Review the specifications about the
maximum messages you expect to send and
receive, and adjust program parameters
accordingly.

NWDS_DDL_INVALID_FIELD Invalid DDL The INI file is invalid. One of the data types is not
field recognized.

NWDS DDL_MISSING_FIELD Missing DDL The INI file is invalid. An expected field is
field missing. Check and update your INI file.

NWDS DDL_NOT_DEFINED DDL_ENTRY The INI file is incomplete or the message name
not set for does not match the group in the INI file that
name contains the metadata to describe the message.

Check and update your INI file.

NWDS_DDL_SIZE_MISMATCH

DDL size does
not match file

The data and data type are inconsistent.

NWDS_DELETE_FAILED

Delete failed

NWDS_TANDEM_CLEAR_TIMER_EVENTS
returns this code when it cannot locate the event.
If this occurs in well-tested procedures, it is an
exceptional user condition.

NWDS_DELETED_RECORD

NWDS_

DIRECTORY_EXISTS

Discontinued

NWDS_DISK_ERROR

Disk error
received

None. For more information, see the error log.

NWDS_DLL_IN_USE

NWDS_DLL_NOT_LOADED

Discontinued

January 2003

230

NetWeave API| Reference Manual

Version 2.0

Return code

It means

Suggested recovery

NWDS_DUPLICATE_PROCESS

Duplicate
process name

This runtime error is usually caused by an
attempt to run an Agent or application server
more than once.

NWDS_EOF

End of file

The user must evaluate the context of this
condition to decide whether it is an expected or
exceptional condition.

NWDS_EXECUTE_FAILED

Execute image
failed

This code is specific to IBM/CICS. If it occurs
during runtime, a long-running transaction may
be running already.

NWDS_FILE_EXISTS

Discontinued

NWDS_FILE_IN_USE

File is currently
in use

A second user is trying to access a non-shared
file.

NWDS_FILE_IS_FULL

File is full

None.

NWDS_FILE_MODIFIED_
DURING_READS

Discontinued.

NWDS_FILE_NOT_FOUND

File not found

The user must decide whether this is a problem
or a non-fatal condition.

NWDS_FILE_NOT_OPEN

File has not
been opened

You are trying to access a file that is not open.
This usually indicates a coding mistake by the
user. For more information, see the error log.

NWDS_ILLEGAL_FILENAME

lllegal file
specification

The name is either blank, too long, or improper
syntax for the remote system.

NWDS_INDEX_NOT_FOUND

NWDS_INI_FILE_NOT_FOUND

NWDS_INI_FILE_NOT_OPEN

NWDS_INIT_ERROR

NWDS_INVALID_DUPLICATE_
KEY

Discontinued

NWDS_INVALID_FILE_TYPE

Invalid file type

The file is not a FIFO. For more information, see
the error log.

NWDS_INVALID _10_OPERATION | Invalid I/O This error is specific to Tandem Guardian. The
operation user is trying to perform an action that is not
supported for the target file type.
NWDS_INVALID_ITEM Invalid item An item in an item list is not of the proper data

type or the value is out of range.

NWDS_INVALID_KEYED_
RELATION

Discontinued

January 2003

231

NetWeave API| Reference Manual

Version 2.0

Return code It means Suggested recovery
NWDS_INVALID_OPERATION Invalid The attempted operation is not appropriate to the
operation target object. For example, trying to write to a file

opened for read access. For more information,
see the error log.

NWDS_INVALID_RECORD _
NUMBER

Invalid record
number

This code is specific to Alpha/Open VMS and
means that the record number is out of range.

NWDS_INVALID_RECORD_SIZE

NWDS_INVALID_SUBSTITUTION

Discontinued

NWDS_INVALID_TRANSACTION_
ID

Invalid
transaction ID

The transaction is no longer active.

NWDS I0_NOT_PROCESSED Asynchronous This condition is typical in the Tandem Guardian
I/0 not environment where a user application expects to
processed receive messages about which NetWeave knows

nothing.

NWDS_10_PROCESSED Asynchronous This is the normal completion code for calls to

I/O processed

NWDS_TANDEM_AWAITIOX NetWeave has
processed the message; retry the operation.

NWDS_ISCALL

NWDS_ISHANGUP

NWDS_ISNEWCLIENT

NWDS_ITEM_INDEX

Discontinued

NWDS_KERNEL_NOT _
INITIALIZED

Kernel not
initialized

This is an exceptional user condition. Please
contact NetWeave support with the error traces
and INI file for the program that received the
error.

NWDS_KEY_MUST_BE_EXPLICIT

Discontinued

NWDS_LIBRARY_ERROR

Library error

This is an exceptional user condition. Please
contact NetWeave support with the error traces
and INI file for the program that received the
error.

NWDS_LINK_DOWN

Communication
link is down

The user must assess whether this is a fatal or
normal condition for the current circumstance.

NWDS_LOGON_DENIED

Logon denied

The user is not authorized to access the remote
system.

NWDS_LOGON_DISABLED

Logon disabled

nwds_logon attempted but security is not
enabled for this connection.

NWDS_LONG_RECORD

Discontinued

January 2003

232

NetWeave API| Reference Manual

Version 2.0

Return code

It means

Suggested recovery

NWDS_MAX_SERVERS_
RUNNING

Maximum
servers running

This code is specific to Tandem SQL/MP.
Increase the servers or try later.

NWDS_MUST_LOCK_IMPLICITLY

Discontinued

NWDS_NAME_NOT_FOUND

Name not
found in INI file

The name does not match any group in the INI
file. Check and update your INI file.

NWDS_NO_DATA

No data
available on
handle

Assess whether this is a fatal or normal condition
for this circumstance. If you did not expect an
error, see the error log for more information.

NWDS_NO_MEMORY

Process out of

None. The system is overloaded.

memory
NWDS_NO_NWDS_TRANS_ID No Trans_ID The transaction is no longer active. For more
supplied information, see the error log.

NWDS_NO_OUTSTANDING_IO

No outstanding
I/O

Usually indicates a coding problem: you have
called nwds_sleep and there are no outstanding
events. If this occurs in well-tested code, it is an
exceptional user condition.

NWDS_NO_TRANSACTION

No transaction

The transaction is no longer active. For more
information, see the error log.

NWDS_NO_TRANSACTION_
MONITORING

No transaction
monitoring

There is no TP monitor for this system.

NWDS_NOT_A_FILE

Discontinued

NWDS_NOT_IMPLEMENTED

Feature not
implemented

None. The function is not available on the current
platform.

NWDS_NOT_INITIALIZED

All NetWeave functions must be called after
calling nwds_init() and before calling nwds_exit().
Call nwds_init() and re-issue the NetWeave
function call.

NWDS_NOT_ON_DIR

Discontinued

NWDS_NOT_OPEN_FOR_

File not open

DELETE for delete
NWDS _NOT_OPEN_FOR_ File not open
UPDATE for update

This condition is specific for files on Alpha/Open
VMS. Verify that the file is being opened properly
for this type of operation.

NWDS_NOT_OPEN_FOR_WRITE

File not open
for write

For FIFOs, you are trying to write to a FIFO using
a handle that is limited to reading messages.

NWDS_NOT_OPEN_WITH_INDEX

File not open
with indexing

This condition is specific for files on Alpha/Open
VMS. Verify that the file is being opened properly
for indexed operations.

January 2003

233

NetWeave API| Reference Manual

Version 2.0

Return code It means Suggested recovery
NWDS_NOTHREAD No thread This is an exceptional user condition. Please
active or contact NetWeave support with the error traces
supplied and INI file for the program that received the

error.

NWDS_OPEN_FAILED

Open file failed

The error log may contain additional information
about why you cannot open this file. Check the
INI file to verify that the name is spelled correctly
and that the path has not been changed.

NWDS_OPERATION_FAILED Operation Usually indicates a coding mistake by the user. If
failed this occurs in a well-tested program, treat it as an
exceptional user condition. For more information,
see the error log.
NWDS_PASSWORD_REQUIRED | Password is Supply the password by calling nwds_password.

required after
logon

NWDS_PENDING

The operation has been initiated successfully.
Final status and data will be delivered to the
specified callback function.

NWDS_PORT_ALREADY _
ATTACHED

NWDS_PORT_NOT_ATTACHED

Discontinued

NWDS_POSITION_FAILED

Position failed

This is specific to Tandem TM/MP when
replicating structured files to a Guardian platform.
It is an exceptional user condition.

NWDS_POSITION_UNDEFINED

Discontinued

NWDS_PROCESS_NOT_
CONNECTED

Process not
connected

nwds_session_close returns this condition if the
session is already closed.

NWDS_PROCESS_NOT_FOUND

Process not
found

NWDS_READ_FAILED

Read from file
failed

NWDS_RECORD_IN_USE

Record in use

The error log should explain what happened. If it
doesn't, treat this as an exceptional user
condition.

NWDS_RECORD_IS_LOCKED

Record is
already locked

The attempt to lock a file record failed because
the record is already locked.

January 2003

234

NetWeave API| Reference Manual

Version 2.0

Return code

It means

Suggested recovery

NWDS_RECORD_NOT_FOUND

NWDS_RECORD_TOO_LONG

NWDS_RECORD_TOO_SHORT

NWDS_REJECTED

Discontinued

NWDS_REQUEST_DENIED

Request denied
by server

The user is not authorized to perform the
function. For more information, see the error log.

NWDS_RESUBMIT _
TRANSACTION

Discontinued

NWDS_RMS_CLOSE_FAILED

RMS close
failed

NWDS_RMS_CONNECT_FAILED

RMS connect
failed

NWDS_RMS_CREATE_FAILED RMS create
failed

NWDS_RMS _DELETE_FAILED RMS delete
failed

NWDS_RMS_ERASE_FAILED RMS erase
failed

This condition is specific for files on Alpha/Open
VMS. Obtain the VMS/RMS error code from the
NetWeave error log and contact NetWeave
Technical Support for a problem diagnosis.

NWDS_RMS_NODE_NAME

NWDS_RMS_SEARCHLIST

Discontinued

NWDS_RMS_UPDATE_FAILED

RMS update
failed

This condition is specific for files on Alpha/Open
VMS. Get the VMS/RMS error code from the
NetWeave error log, and contact NetWeave
Technical Support to diagnose the problem.

NWDS_RMS_WILDCARDS

Wildcard error

This condition is specific for files on Alpha/Open
VMS and indicates that a name with wildcard
characters is not permitted in this context.

NWDS_SECURITY_VIOLATION Security This user’s access privileges do not allow this
violation action. For more information, see the error log.
NWDS_SEEK FAILED Seek to The record does not exist or the position

position in file
failed

parameters are out of range for this system.

NWDS_SQL_BAD_PASSWORD

NWDS_SQL_BAD_USERNAME

Discontinued

January 2003

235

NetWeave API| Reference Manual

Version 2.0

Return code

It means

Suggested recovery

NWDS_SQL_ERROR

Error from SQL
Server

Many different conditions can cause this code.
For more information, see the error log.

NWDS_SQL_INVALID_COLUMN Invalid SQL The column name does not occur in this
column index table.

NWDS_SQL_INVALID_VERB Invalid SQL The SQL statement is improper.
verb for call

NWDS_SQL_LOGON_FAILED

NWDS_STALE_ROW

Discontinued

NWDS_STOP_FAILED

Stop process
failed

This code is specific to Alpha/Open VMS. Stop
the process from the system console.

NWDS_SYSTEM_NOT_FOUND

System node
not recognized

For IBM/CICS: the monitor has restarted the
router or the TCP/IP helper process. Any remote
connections must be reestablished.

For Tandem, Guardian error 18 was returned on
a system call, and the connection must be
restarted/reestablished.

NWDS_TAPE_PAST_EOT

Discontinued

NWDS_TIMEOUT

Operation
timed out

An operation timed out.

NWDS_TP_NOT_INITIALIZED

No transaction
monitor
supported

None. The TP monitor is not operating.

NWDS_TRANSACTION_
ABORTED

Transaction
was aborted

NWDS_TRANSACTION_ACTIVE

Transaction is
active

None. This is an informational message.

NWDS_TRANSACTION_

Discontinued

COMMITTED
NWDS_TRANSACTION _ Transaction None. This is an informational message.
INCOMPLETE incomplete

NWDS_UPDATE_FAILED

Update failed

Exceptional user condition. Please contact
NetWeave support with the error traces and INI
file for the program that received the error.

NWDS_UX_USER_DATA_TO_
PROCESS

Discontinued

January 2003

236

III NetWeave API Reference Manual Version 2.0
L]
Return code It means Suggested recovery
NWDS_VMS_CREPRC_FAILED VMS This condition is specific for processes on
SYS$CREPRC | Alpha/Open VMS. The VMS System service

failed CREPRC (Create Process) or GETJPI (Get Job
Info) failed. See the NetWeave error log for more

NWDS_VMS_GETJPI_FAILED VMS information, and contact NetWeave technical
SYS$GETJP| support for clarification.
failed

NWDS_WOULD_BLOCK The system is Because the system cannot complete the

overloaded and | operation at this time, retry the call later.
the call would

block now

NWDS_WRITE_FAILED Write to file This is usually a fatal condition. For more
failed information, see the error log.

NWDS_WRONG_VERSION Wrong version | Discontinued

NWDS_ZERO_DATA_SIZE Attemdpt to write | You cannot specify a message length of zero.
zero data

January 2003 237

III NetWeave AP| Reference Manual Version 2.0
Return Code Numeric Definitions
This section details the NetWeave status and error code definitions and their numeric values. The Error

code definitions are listed in aphabetical order and numeric order for ease of reference.

NWDS Status Codes (Non-Error)

NWDS_SUCCESSFUL -1
NWDS_PENDING -2
NWDS_EOF -3
NWDS_ISCALL -4
NWDS_ISHANGUP 5
NWDS_REJECTED -6
NWDS_ISNEWCLIENT 7
NWDS_TRANSACTION_ACTIVE -8
NWDS_TRANSACTION_COMMITTED -9
NWDS_TRANSACTION_ABORTED -10
NWDS_PASSWORD_REQUIRED -11
NWDS Error Codes by Name
NWDS_ABORTED_BY_USER 234
NWDS_ACCESS_VIOLATION 114
NWDS_ALREADY_EXISTS 102
NWDS_BAD_ADDRESS 190
NWDS_BAD_HANDLE 189
NWDS_BAD_INI_PARAMETER 232
NWDS_BAD_PARAMETER 110
NWDS_BAD_PROCESS_NAME 149
NWDS_BAD_PROTOCOL 191
NWDS_BAD_SERVER_NAME 193
NWDS_CANNOT_REGION_LOCK 185
NWDS_CI2_NOT_LOCKED 204
NWDS_CI2_NOT_OUR_LOCK 205
NWDS_CI2_SELF_LOCKED 203
NWDS_DATA_OVERFLOW 121
NWDS_DDL_INVALID_FIELD 217

January 2003 238

III NetWeave API| Reference Manual Version 2.0
*
NWDS_DDL_MISSING_FIELD 216
NWDS_DDL_NOT_DEFINED 219
NWDS_DDL_SIZE_MISMATCH 218

NWDS_DELETE_FAILED 168
NWDS_DELETED_RECORD 161
NWDS_DIRECTORY_EXISTS 179
NWDS_DISK_ERROR 112
NWDS_DLL_IN_USE 230
NWDS_DLL_NOT_LOADED 229
NWDS_DUPLICATE_PROCESS 148
NWDS_EXECUTE_FAILED 147
NWDS_FILE_EXISTS 180
NWDS_FILE_IN_USE 104
NWDS_FILE_IS_FULL 111
NWDS_FILE_MODIFIED_DURING_READS 187
NWDS_FILE_NOT_FOUND 103
NWDS_FILE_NOT_OPEN 107
NWDS_ILLEGAL_FILENAME 105
NWDS_INDEX_NOT_FOUND 162
NWDS_INI_FILE_NOT_FOUND 200
NWDS_INI_FILE_NOT_OPEN 199
NWDS_INIT_ERROR 151
NWDS_INVALID_DUPLICATE_KEY 172
NWDS_INVALID_FILE_TYPE 181
NWDS_INVALID_IO_OPERATION 178
NWDS_INVALID_ITEM 206
NWDS_INVALID_KEYED_RELATION 165
NWDS_INVALID_OPERATION 122
NWDS_INVALID_RECORD_NUMBER 160
NWDS_INVALID_RECORD_SIZE 170
NWDS_INVALID_SUBSTITUTION 201
NWDS_INVALID_TRANSACTION_ID 209
NWDS_IO_NOT_PROCESSED 197
NWDS_IO_PROCESSED 196

January 2003 239

III NetWeave API| Reference Manual Version 2.0
*
NWDS_ITEM_INDEX 163
NWDS_KERNEL_NOT_INITIALIZED 207
NWDS_KEY_MUST_BE_EXPLICIT 164

NWDS_LIBRARY_ERROR 120
NWDS_LINK_DOWN 117
NWDS_LOGON_DENIED 214
NWDS_LOGON_DISABLED 213
NWDS_LONG_RECORD 175
NWDS_MAX_SERVERS_RUNNING 123
NWDS_MUST_LOCK_IMPLICITLY 184
NWDS_NAME_NOT_FOUND 220
NWDS_NO_DATA 195
NWDS_NO_MEMORY 152
NWDS_NO_NWDS_TRANS_ID 233
NWDS_NO_OUTSTANDING_IO 198
NWDS_NO_TRANSACTION 208
NWDS_NO_TRANSACTION_MONITORING 210
NWDS_NOT_A_FILE 182
NWDS_NOT_IMPLEMENTED 118
NWDS_NOT_INITIALIZED 239
NWDS_NOT_ON_DIR 186
NWDS_NOT_OPEN_FOR_DELETE 131
NWDS_NOT_OPEN_FOR_UPDATE 130
NWDS_NOT_OPEN_FOR_WRITE 133
NWDS_NOT_OPEN_WITH_INDEX 132
NWDS_NOTHREAD 238
NWDS_OPEN_FAILED 143
NWDS_OPERATION_FAILED 113
NWDS_PORT_ALREADY_ATTACHED 188
NWDS_PORT_NOT_ATTACHED 177
NWDS_POSITION_FAILED 167
NWDS_POSITION_UNDEFINED 202
NWDS_PROCESS_NOT_CONNECTED 119
NWDS_PROCESS_NOT_FOUND 106

January 2003 240

III NetWeave API| Reference Manual Version 2.0
*
NWDS_READ_FAILED 144
NWDS_RECORD_IN_USE 173
NWDS_RECORD_IS_LOCKED 116

NWDS_RECORD_NOT_FOUND 166
NWDS_RECORD_TOO_LONG 171
NWDS_RECORD_TOO_SHORT 169
NWDS_REQUEST DENIED 215
NWDS_RESUBMIT_TRANSACTION 231
NWDS_RMS_CLOSE_FAILED 142
NWDS_RMS_CONNECT_FAILED 141
NWDS_RMS_CREATE_FAILED 140
NWDS_RMS_DELETE_FAILED 135
NWDS_RMS_ERASE_FAILED 136
NWDS_RMS_NODE_NAME 137
NWDS_RMS_SEARCHLIST 138
NWDS_RMS_UPDATE_FAILED 134
NWDS_RMS_WILDCARDS 139
NWDS_SECURITY_VIOLATION 115
NWDS_SEEK_FAILED 146
NWDS_SQL_BAD_PASSWORD 225
NWDS_SQL_BAD_USERNAME 224
NWDS_SQL_ERROR 223
NWDS_SQL_INVALID_COLUMN 227
NWDS_SQL_INVALID_VERB 228
NWDS_SQL_LOGON_FAILED 226
NWDS_STALE_ROW 212
NWDS_STOP_FAILED 150
NWDS_SYSTEM_NOT_FOUND 109
NWDS_TAPE_PAST_EOT 174
NWDS_TIMEOUT 194
NWDS_TP_NOT_INITIALIZED 235
NWDS_TRANSACTION_INCOMPLETE 211
NWDS_UPDATE_FAILED 176
NWDS_UX_USER_DATA_TO_PROCESS 236

January 2003 241

III NetWeave API| Reference Manual Version 2.0
*
NWDS_VMS_CREPRC_FAILED 222
NWDS_VMS_GETJPI_FAILED 221
NWDS_WOULD_BLOCK 237

NWDS_WRITE_FAILED 145
NWDS_WRONG_VERSION 183
NWDS_ZERO_DATA_SIZE 192

NWDS Error Codes by numeric value
102 NWDS_ALREADY_EXISTS
103NWDS_FILE_NOT_FOUND
104 NWDS_FILE_IN_USE
105 NWDS_ILLEGAL_FILENAME
106 N\WDS_PROCESS_NOT_FOUND
107 NWDS_FILE_NOT_OPEN
109 NWDS_SYSTEM_NOT_FOUND
110NWDS_BAD_PARAMETER
111NWDS_FILE_IS_FULL
112NWDS_DISK_ERROR
113NWDS_OPERATION_FAILED
114NWDS_ACCESS_VIOLATION
115NWDS_SECURITY_VIOLATION
116 NWDS_RECORD_IS_LOCKED
117 NWDS_LINK_DOWN
118 NWDS_NOT_IMPLEMENTED
119NWDS_PROCESS_NOT_CONNECTED
120NWDS_LIBRARY_ERROR
121 NWDS_DATA_OVERFLOW
122 NWDS_INVALID_OPERATION
123NWDS_MAX_SERVERS_RUNNING
130NWDS_NOT_OPEN_FOR_UPDATE
131NWDS_NOT_OPEN_FOR_DELETE
132NWDS_NOT_OPEN_WITH_INDEX
133NWDS_NOT_OPEN_FOR_WRITE
134NWDS_RMS_UPDATE_FAILED
135NWDS_RMS_DELETE_FAILED

January 2003 242

III NetWeave API| Reference Manual Version 2.0
*
136 NWDS_RMS_ERASE_FAILED
137NWDS_RMS_NODE_NAME
138NWDS_RMS_SEARCHLIST

139NWDS_RMS_WILDCARDS
140NWDS_RMS_CREATE_FAILED
141NWDS_RMS_CONNECT_FAILED
142NWDS_RMS_CLOSE_FAILED
143NWDS_OPEN_FAILED
144NWDS_READ_FAILED
145NWDS_WRITE_FAILED

146 NWDS_SEEK_FAILED
147NWDS_EXECUTE_FAILED

148 NWDS_DUPLICATE_PROCESS
149NWDS_BAD_PROCESS_NAME

150 NWDS_STOP_FAILED
151NWDS_INIT_ERROR
152NWDS_NO_MEMORY
160NWDS_INVALID_RECORD_NUMBER
161NWDS_DELETED_RECORD

162 NWDS_INDEX_NOT_FOUND
163NWDS_ITEM_INDEX
164NWDS_KEY_MUST_BE_EXPLICIT
165NWDS_INVALID_KEYED_RELATION
166 NWDS_RECORD_NOT_FOUND
167 NWDS_POSITION_FAILED

168 NWDS_DELETE_FAILED
169NWDS_RECORD_TOO_SHORT
170NWDS_INVALID_RECORD_SIZE
171NWDS_RECORD_TOO_LONG
172NWDS_INVALID_DUPLICATE_KEY
173NWDS_RECORD_IN_USE
174NWDS_TAPE_PAST_EOT
175NWDS_LONG_RECORD

176 NWDS_UPDATE_FAILED

January 2003 243

179NWDS_DIRECTORY_EXISTS
180NWDS_FILE_EXISTS
181 NWDS_INVALID_FILE_TYPE

III NetWeave API| Reference Manual Version 2.0
*

177NWDS_PORT_NOT_ATTACHED

178 NWDS_INVALID_IO0_OPERATION

182NWDS_NOT_A_FILE
183NWDS_WRONG_VERSION
184NWDS_MUST_LOCK_IMPLICITLY
185NWDS_CANNOT_REGION_LOCK

186 NWDS_NOT_ON_DIR

187 NWDS_FILE_MODIFIED_DURING_READS
188NWDS_PORT_ALREADY_ATTACHED

189 NWDS_BAD_HANDLE
190NWDS_BAD_ADDRESS
191NWDS_BAD_PROTOCOL
192NWDS_ZERO_DATA_SIZE
193NWDS_BAD_SERVER_NAME
194NWDS_TIMEOUT

195NWDS_NO_DATA

196 NWDS_IO_PROCESSED
197NWDS_IO_NOT_PROCESSED

198 NWDS_NO_OUTSTANDING_IO
199NWDS_INI_FILE_NOT_OPEN
200NWDS_INI_FILE_NOT_FOUND
201NWDS_INVALID_SUBSTITUTION
202NWDS_POSITION_UNDEFINED
203NWDS_CI2_SELF_LOCKED
204NWDS_CI2_NOT_LOCKED
205NWDS_CI2_NOT_OUR_LOCK

206 NWDS_INVALID_ITEM
207NWDS_KERNEL_NOT_INITIALIZED

208 NWDS_NO_TRANSACTION
209NWDS_INVALID_TRANSACTION_ID
210NWDS_NO_TRANSACTION_MONITORING

January 2003 244

III NetWeave API| Reference Manual Version 2.0
*
211NWDS_TRANSACTION_INCOMPLETE
212NWDS_STALE_ROW
213NWDS_LOGON_DISABLED

214NWDS_LOGON_DENIED
215NWDS_REQUEST_DENIED

216 NWDS_DDL_MISSING_FIELD
217NWDS_DDL_INVALID_FIELD
218NWDS_DDL_SIZE_MISMATCH
219NWDS_DDL_NOT_DEFINED
220NWDS_NAME_NOT_FOUND
221NWDS_VMS_GETJPI_FAILED
222NWDS_VMS_CREPRC_FAILED
223NWDS_SQL_ERROR
224NWDS_SQL_BAD_USERNAME
225NWDS_SQL_BAD_PASSWORD

226 NWDS_SQL_LOGON_FAILED
227NWDS_SQL_INVALID_COLUMN
228NWDS_SQL_INVALID_VERB
229NWDS_DLL_NOT_LOADED
230NWDS_DLL_IN_USE
231NWDS_RESUBMIT_TRANSACTION
232NWDS_BAD_INI_PARAMETER
233NWDS_NO_NWDS_TRANS_ID
234NWDS_ABORTED_BY_USER
235NWDS_TP_NOT_INITIALIZED

236 NWDS_UX_USER_DATA_TO_PROCESS
237NWDS_WOULD_BLOCK
238NWDS_NOTHREAD
239NWDS_NOT_INITIALIZED

January 2003 245

Glossary

Agent

Asynchronous

Broadcast services

Client-database
services

Client-server model

Client-transaction
services

Consumer process

Dispatcher

Distributor

Event-driven design

NetWeave API| Reference Manual

Version 2.0

The NetWeave process that controls all input and output to queues, sends
notifications to clients when data base changes have occurred, and is
responsible for all aspects of security and data conversion.

An operation in which the applications program is alowed to continue
execution while the operation is performed. The access method informs
the application program when the operation is compl eted.

Simultaneous transmission of data to more than one destination: one
sender, unlimited receivers. Message deliveries are connectionless and
unacknowledged.

Allows dl other computersin the network, regardless of platform type, to
access one computer’s file system.

A client application sends a request message to a server program. The
server program retrieves information or updates a local database on behalf
of the (remote) client application.

Applications where programs communicate and synchronize operations by
exchanging messages (1PC). They are used to implement on-line
transaction processing and high-speed, real-time process control
applications.

An asynchronous procedure that is responsible for processing the datain a
message queue.

In a distributor-based threaded server, the Dispatcher (provided by
NetWeave as part of the nwds_di spat cher _ function set) is
responsible for creating application threads and passing messages to them
once started.

A NetWeave-provided facility for multi-threaded server processes. The
Didtributor starts and manages simple application threads for processing

messages.

A non-procedural methodology of software development that is
asynchronous in nature, and is fundamentally multi-threaded because it
alows you to maintain multiple concurrent sessions.

January 2003

246

III NetWeave API Reference Manual Version 2.0
L]
Interprocess The process by which programs communicate data to each other and
communication (IPC) synchronize their activities.
Item list A variable-length array of parameters whose last element is a unique type,
NWDS_END_OF_LI ST. Each element (item) in the array has three
components:

Type: aconstant from net weave. h that identifies a parameter
(parameter name).

Length: the length of the parameter value. Most parameters are
either 16-bit integers (NWDS_SHORT) or 32-hit integers
(NWDS_LONG). Variable-length parameters are considered to be
of type NWDS_CHAR. For return item lists, the length is the
maximum number of bytes that can be copied to the destination
location.

Pointer to value: for a control item list, thisis the address of the
location in memory where you have stored the value you want to
assign to the parameter. For areturn item list, thisis the addressin
which to store the returned value.

Legacy application The vast collection of commercial and scientific applications written since
the late 70s that share one or more of these features:

The application resides on a single hardware platform.
The user interface is the traditional character-oriented termind.
Access to related application functions is via menus and function
keys.
Application data are stored in record-oriented files.
Access to these records is typically through keys and indices.

Loopback testing mode Used for unit testing locally. Most applications except client-database can
(and should) be constructed to run on a single platform. For example, if
you are doing IPC messaging, construct a simple client or server to interact
with your application. Such atest bed is said to run in “loopback” mode.

Netweave.h NetWeave header file. Contains the officia definition of the API.

On-line transaction A system that processes multiple transactions concurrently and where the
processing (OLTP) data flows to/from the computer directly from the point of origin.
Peer-to-peer model Data communi cations between two nodes(processes) that have equal status

in the interchange. Any peer node can both generate messages to other
processes aswell as receive (unsolicited) messages from other processes.

January 2003 247

Polling for a completion

Producer application

Queuing services

Receiver application

To scale
(growth of application)

Sender application

Synchronous
function call

Thread,
boss thread,
worker thread

UDP datagram

Unsolicited message

Workflow model

NetWeave API| Reference Manual

Version 2.0

Monitoring aflag that the completion function sets up when the
(asynchronous) NetWeave function finishes.

In FIFO message queuing, a producer puts messages at the tail of the
gueue, and a consumer gets messages from the head of the queue.

NetWeave services that store messages awaiting delivery. Queuing
services are often the core of store and forward applications.

A process that reads and reacts to broadcast messages.

To enlarge or expand either a process, or the number of messages that a
process can handle.

An application program that generates a message to broadcast.

Initiated by a process that requests a specific event. All other processing is
suspended until aresponseis received for the request.

The boss/worker thread model is a thread-based mechanism for work
distribution between threads. A unit of work is ddlivered to the boss, which
chooses aworker thread to perform the task and then return the result to
either the boss or the originator.

User Datagram Protocol (UDP) is an IP protocol. Datagrams are ideal for
broadcasts because they are delivered to the IP network layer regardiess
how many nodes in the network may consume the information. A
datagram is the basic unit of information passed across the Internet
environment. It contains a source and destination address along with the
data. An Internet Protocol (1P) datagram consists of an I P header followed
by the data.

A message that a process receives without any prior prompting.

The automobile assembly line is a paradigm for the workflow model in
manufacturing. Each cell accepts the outputs of its predecessors as its
inputs, modifies the assemblage and passes its output to its successors.

January 2003

248

